Source on Soil Vibration Experimental Study on the Suppression Effect of Horizontal Row Piles on Soil Vibration Frequency
-
摘要: 为研究水平放置排桩对土体振动幅值的抑制作用,采用控制变量法进行模型试验,将试验获得的时域信号通过傅里叶变换转换为频域信号,得到频域条件下土体振幅,并绘制土体振幅等值线图,对等值线图不同区域土体振幅进行分析,重点分析振幅显著位置处数值变化。研究结果表明,排桩布置区域上方土体振幅大于排桩布置区域外的土体振幅,沿桩长方向土体振幅大于垂直于桩方向土体振幅;在排桩布置区域上方,排桩对高频波引起的土体振动抑制作用较差,对低频波引起的土体振动抑制作用较明显;排桩埋深越小,对土体振动的抑制作用越明显;排桩布置区域填充率越大,对土体振动的抑制作用越明显;排桩桩径越大,对土体振动的抑制作用越明显。Abstract: For the study of horizontal soil pile on the vibration amplitude of the inhibition, the control variable method is adopted for model test. The time domain signal resulted from the test can be converted into frequency domain signal through Fourier transform, and the soil amplitude under the frequency domain was derived, and the amplitude contour map was drawn. The isoline map amplitude was analyzed, especially for different regions of key prominently in the numerical analysis of amplitude change. The results show that the soil amplitude above the pile row area is larger than that outside the pile row area, and the soil amplitude along the pile length is larger than that perpendicular to the pile. Above the pile row area, the soil vibration induced by high frequency wave is suppressed poorly, but the soil vibration induced by low frequency wave is suppressed obviously. The smaller the pile row depth is, the more obvious the soil vibration inhibition is. The larger the filling rate is, the more obvious the inhibition of soil vibration is. The larger the pile diameter, the more obvious the soil vibration inhibition.
-
Key words:
- Vibration frequency /
- Vibration amplitude /
- Fourier transform /
- Horizontal row of piles /
- Model test
-
表 1 试验工况
Table 1. Test condition lists
工况 埋深w/cm 振源频率f/Hz 填充率m/% 桩径d/cm 工况1 15 10 66.7 10 工况2 15 60 66.7 10 工况3 15 150 66.7 10 工况4 5 60 66.7 10 工况5 20 60 66.7 10 工况6 15 60 50.0 10 工况7 15 60 83.3 10 工况8 15 60 66.7 5 工况9 15 60 66.7 15 -
[1] 毕俊伟, 高广运, 张建经, 2020. 斜桩加固下覆倾斜基底软土桩-网复合地基离心模型试验. 同济大学学报(自然科学版), 48(7): 953—961Bi J. W. , Gao G. Y. , Zhang J. J. , 2020. Centrifuge model test of soft soil for pile-net composite foundation with overlying sloping base reinforced by inclined piles. Journal of Tongji University (Natural Science), 48(7): 953—961. (in Chinese) [2] 段付佳, 2019. 轨道不平顺测量方法及其频谱分析. 成都: 西南交通大学.Duan F. J., 2019. Measurement method of track irregularity and its spectrum analysis. Chengdu: Southwest Jiaotong University. (in Chinese) [3] 高广运, 李绍毅, 2015. 列车运行引起的CFG桩复合路基动力响应分析. 振动与冲击, 34(24): 135—143Gao G. Y. , Li S. Y. , 2015. Dynamic response of CFG pile composite subgrade induced by moving train loadings. Journal of Vibration and Shock, 34(24): 135—143. (in Chinese) [4] 高健, 2019. 周期性排桩在轨道交通隔振中的应用研究. 北京: 北京交通大学.Gao J., 2019. Research on application of periodic piles in vibration isolation of rail transit. Beijing: Beijing Jiaotong University. (in Chinese) [5] 刘晶磊, 宋绪国, 董捷等, 2014. 水泥土排桩加固重载铁路路基的数值分析. 铁道工程学报, (6): 18—23 doi: 10.3969/j.issn.1006-2106.2014.06.005Liu J. L. , Song X. G. , Dong J. , et al. , 2014. Numerical analysis of reinforcing heavy haul railway subgrade by cement soil piles. Journal of Railway Engineering Society, (6): 18—23. (in Chinese) doi: 10.3969/j.issn.1006-2106.2014.06.005 [6] 刘晶磊, 冯桂帅, 王建华等, 2018. 轨道交通单排非连续隔振屏障隔振效果模型试验研究. 振动与冲击, 37(11): 175—182, 201Liu J. L. , Feng G. S. , Wang J. H. , et al. , 2018. Model tests for effects of rail transit’s single row discontinuous vibration isolation barriers. Journal of Vibration and Shock, 37(11): 175—182, 201. (in Chinese) [7] 罗权, 2018. 地铁振动激励下两种结构形式的振动响应分析. 广州: 华南理工大学.Luo Q., 2018. Study on the metro-induced vibration response of two structure forms. Guangzhou: South China University of Technology. (in Chinese) [8] 屈畅姿, 王永和, 魏丽敏等, 2012. 武广高速铁路路基振动现场测试与分析. 岩土力学, 33(5): 1451—1456, 1461 doi: 10.3969/j.issn.1000-7598.2012.05.027Qu C. Z. , Wang Y. H. , Wei L. M. , et al. , 2012. In-situ test and analysis of vibration of subgrade for Wuhan-Guangzhou high-speed railway. Rock and Soil Mechanics, 33(5): 1451—1456, 1461. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.05.027 [9] 王另的, 2016. 地铁近场建筑物周期性排桩隔振性能研究. 北京: 中国铁道科学研究院.Wang L. D., 2016. The study on vibration isolation performance of periodic row piles in subway near field buildings. Beijing: China Academy of Railway Sciences. (in Chinese) [10] 王维玉, 赵拓, 丁继辉, 2010. CFG桩复合地基动力特性和时程响应影响因素分析. 岩土工程学报, 32(S2): 115—118Wang W. Y. , Zhao T. , Ding J. H. , 2010. Influencing factors of dynamic characteristics and response of cement-fly ash-gravel pile composite foundation. Chinese Journal of Geotechnical Engineering, 32(S2): 115—118. (in Chinese) [11] 张雷刚, 刘晶磊, 侯恩品等, 2017. 铁路路基填充屏障隔振效果的模型试验研究. 铁道建筑, (4): 146—150 doi: 10.3969/j.issn.1003-1995.2017.04.36Zhang L. G. , Liu J. L. , Hou E. P. , et al. , 2017. Model test research on vibration isolation effects of filling barriers for railway subgrade. Railway Engineering, (4): 146—150. (in Chinese) doi: 10.3969/j.issn.1003-1995.2017.04.36 [12] 周业梅, 郑会华, 胡晶晶等, 2015. 重载列车引起地面振动的实测分析. 武汉理工大学学报, 37(2): 106—111, 132Zhou Y. M. , Zheng H. H. , Hu J. J. , et al. , 2015. Measurement and analysis of ground vibration caused heavy haul train. Journal of Wuhan University of Technology, 37(2): 106—111, 132. (in Chinese) [13] Schmid G. , Chouw N. , Le R. , 1992. Shielding of structures from soil vibrations. In: Proceedings of Soil Dynamics and Earthquake Engineering V. Southampton Boston: Computational Mechanics Publications, 651—662. [14] Tan Y. , He Z. , Li Z. J. , 2009. Mitigation analysis of WIB for low-frequency vibration induced by subway. In: Proceedings of the 2nd International Conference on Transportation Engineering. Chengdu, China: ASCE, 741—746.