• ISSN 1673-5722
  • CN 11-5429/P

地震-台风耦合作用下近海导管架平台动力响应分析

金宇航 闫培雷 郭恩栋 吴厚礼 何润泽 王晓娜

金宇航,闫培雷,郭恩栋,吴厚礼,何润泽,王晓娜,2022. 地震-台风耦合作用下近海导管架平台动力响应分析. 震灾防御技术,17(1):132−142. doi:10.11899/zzfy20220114. doi: 10.11899/zzfy20220114
引用本文: 金宇航,闫培雷,郭恩栋,吴厚礼,何润泽,王晓娜,2022. 地震-台风耦合作用下近海导管架平台动力响应分析. 震灾防御技术,17(1):132−142. doi:10.11899/zzfy20220114. doi: 10.11899/zzfy20220114
Jin Yuhang, Yan Peilei, Guo Endong, Wu Houli, He Runze, Wang Xiaona. Dynamic Response Analysis of Offshore Jacket Platform under the Coupling Action of the Earthquake and Typhon[J]. Technology for Earthquake Disaster Prevention, 2022, 17(1): 132-142. doi: 10.11899/zzfy20220114
Citation: Jin Yuhang, Yan Peilei, Guo Endong, Wu Houli, He Runze, Wang Xiaona. Dynamic Response Analysis of Offshore Jacket Platform under the Coupling Action of the Earthquake and Typhon[J]. Technology for Earthquake Disaster Prevention, 2022, 17(1): 132-142. doi: 10.11899/zzfy20220114

地震-台风耦合作用下近海导管架平台动力响应分析

doi: 10.11899/zzfy20220114
基金项目: 中国地震局地震工程与工程振动重点实验室重点专项(2019EEEVL0103-01)
详细信息
    作者简介:

    金宇航,男,生于1997年。硕士。主要从事生命线工程研究。E-mail:jyuhang824@163.com

    通讯作者:

    闫培雷,男,生于1982年。副研究员。主要从事地震工程与防灾减灾工程研究。E-mail:yanpeilei325@163.com

Dynamic Response Analysis of Offshore Jacket Platform under the Coupling Action of the Earthquake and Typhon

  • 摘要: 针对地震-台风耦合作用下的近海导管架海洋平台,运用Morison方程将台风对导管架平台的拖曳力及波浪对导管架平台的拖曳力和惯性力施加在结构上,并在基底施加地震动,建立地震-台风耦合作用下的运动方程。通过模态分析,确定结构的基本自振频率,进而选取卓越频率与该频率较为接近的海底地震动进行输入。对通过数值模型计算得到的导管架平台动力响应,参考相关文献中的限值,对耦合作用下的平台进行安全评估,给出了近海导管架海洋平台在地震-台风耦合作用下的损伤状态评定标准。本文关于导管架平台动力响应的统计结果,对导管架结构性态设计具有一定参考意义。
  • 图  1  导管架平台

    Figure  1.  Site photo of jacket platform

    图  2  导管架平台有限元模型

    Figure  2.  Finite element model of jacket platform

    图  3  应力-塑性应变曲线

    Figure  3.  Stress-plastic strain curve

    图  4  导管架平台前3阶振型

    Figure  4.  First three mode shape of jacket platform

    图  5  地震动加速度时程

    Figure  5.  Acceleration history of earthquake

    图  6  地震动加速度傅里叶谱

    Figure  6.  Fourier amplitude spectrum of ground motion acceleration

    图  7  不同时间下的波浪形态

    Figure  7.  Wave patterns at different times

    图  8  各工况下最大应力

    Figure  8.  Maximum stress of each working condition

    图  10  最大应力位置

    Figure  10.  Position of maximum stress

    图  11  高度划分

    Figure  11.  Division of height

    图  12  典型工况应力云图

    Figure  12.  Stress nephogram of typical working conditions

    图  9  各工况下超指标构件数量

    Figure  9.  The number of over-indexed components under each working condition

    图  13  导管架平台pushover曲线

    Figure  13.  Pushover curve of jacket platform

    图  14  各工况下RDA峰值

    Figure  14.  Maximum RDA of each working condition

    表  1  Q345钢应力-塑性应变参数

    Table  1.   Stress-plastic strain parameters of Q345

    应力/MPa塑性应变
    276.00 0
    300.48 1.4e-5
    320.16 5.5e-5
    333.96 1.24e-4
    342.24 2.21e-4
    345.00 3.45e-4
    345.00 0.01338
    下载: 导出CSV

    表  2  前8阶自振频率

    Table  2.   The first 8 order natural frequencies

    振型编号自振频率/Hz
    1 2.8018
    2 2.8753
    3 2.9002
    4 3.3711
    5 3.4598
    6 6.1433
    7 6.1440
    8 7.0278
    下载: 导出CSV

    表  3  渤海海域风速

    Table  3.   Wind speed of Bohai sea

    台风名称风速/m·s−1
    布拉万(2012)20.8
    利奇马(2019)23
    巴威(2020)17.2
    下载: 导出CSV

    表  4  工况表

    Table  4.   Table of working conditions

    地震动强度/g风速/m·s−1
    2333.60
    0.1工况1工况2
    0.15工况3工况4
    0.2工况5工况6
    0.4工况7工况8工况9
    0工况10
    下载: 导出CSV

    表  5  导管架平台损伤状态

    Table  5.   Definition of damage state of jacket platform

    $ {\rm{RDA}} \leqslant {\rm{RD}}{{{A}}_{{\rm{ud}}}} $$ {\rm{RD}}{{{A}}_{{\rm{ud}}}}{{ < \rm RDA}} \leqslant {\rm{RD}}{\rm{{A}}_{{\rm{ye}}}} $$ {\rm{RD}}{{\rm{A}}_{{\rm{ye}}}}{{ < \rm RDA}} \leqslant {\rm{RD}}{{\rm{A}}_{{\rm{ult}}}} $$ {\rm{RDA > RD}}{{\rm{A}}_{{\rm{ult}}}} $
    基本完好轻微破坏严重破坏毁坏
    下载: 导出CSV

    表  6  各工况下导管架平台损伤状态

    Table  6.   Damage state of jacket platform under each working condition

    工况12468
    损伤状态基本完好轻微破坏轻微破坏轻微破坏严重破坏
    下载: 导出CSV

    表  7  超指标构件数量统计

    Table  7.   Statistics on the number of super-index components

    工况导管架帽构件导管架构件超指标构件
    1000
    2505
    4808
    68210
    88816
    下载: 导出CSV

    表  8  不同损伤状态下超指标构件占比

    Table  8.   Proportion of super-index components under different damage states

    损伤状态超指标导管架帽构件比例超指标导管架构件比例
    基本完好≤0≤0
    轻微破坏≤1/4≤1/20
    严重破坏≤1/4≤1/5
    下载: 导出CSV
  • [1] 董汝博, 李昕, 周晶, 2010. 考虑流固耦合的海洋储油罐平台地震反应分析. 船舶力学, 14(8): 887—893 doi: 10.3969/j.issn.1007-7294.2010.08.009

    Dong R. B. , Li X. , Zhou J. , 2010. Seismic analysis of offshore platform with oil storage tank including fluid-structure interaction. Journal of Ship Mechanics, 14(8): 887—893. (in Chinese) doi: 10.3969/j.issn.1007-7294.2010.08.009
    [2] 何晓宇, 李宏男, 2007. 地震与波浪联合作用下海洋平台动力特性分析. 海洋工程, 25(3): 18—25 doi: 10.3969/j.issn.1005-9865.2007.03.003

    He X. Y. , Li H. N. , 2007. Dynamic analysis of offshore platform under seismic action and wave action. The Ocean Engineering, 25(3): 18—25. (in Chinese) doi: 10.3969/j.issn.1005-9865.2007.03.003
    [3] 刘育丰, 彭燕菊, 王俊勤等, 2012. 渤海海域海洋平台抗震设防标准研究. 震灾防御技术, 7(2): 111—120 doi: 10.3969/j.issn.1673-5722.2012.02.001

    Liu Y. F. , Peng Y. J. , Wang J. Q. , et al. , 2012. Study on seismic fortification criteria of offshore platforms in Bohai Sea. Technology for Earthquake Disaster Prevention, 7(2): 111—120. (in Chinese) doi: 10.3969/j.issn.1673-5722.2012.02.001
    [4] 毛晨曦, 李诗尧, 张亮泉, 2018. 典型通信铁塔抗震性能及地震易损性评估. 世界地震工程, 34(1): 63—71

    Mao C. X. , Li S. Y. , Zhang L. Q. , 2018. Seismic capacity and vulnerability of typical communication towers. World Earthquake Engineering, 34(1): 63—71. (in Chinese)
    [5] 孙久洋, 吕涛, 陈国明等, 2020. 基于耐震时程法强震下导管架平台动力响应分析. 振动与冲击, 39(20): 232—241

    Sun J. Y. , Lü T. , Chen G. M. , et al. , 2020. Dynamic response analysis of a jacket platform under strong earthquake based on an endurance time method. Journal of Vibration and Shock, 39(20): 232—241. (in Chinese)
    [6] 万桂梅, 周东红, 汤良杰, 2009. 渤海海域郯庐断裂带对油气成藏的控制作用. 石油与天然气地质, 30(4): 450—454, 461 doi: 10.3321/j.issn:0253-9985.2009.04.010

    Wan G. M. , Zhou D. H. , Tang L. J. , 2009. Control of the Tan-Lu fault zone on hydrocarbon accumulation in the Bohai Sea waters. Oil & Gas Geology, 30(4): 450—454, 461. (in Chinese) doi: 10.3321/j.issn:0253-9985.2009.04.010
    [7] 王健, 2007. 渤海海域历史地震和海啸. 地震学报, 29(5): 549—557 doi: 10.3321/j.issn:0253-3782.2007.05.012

    Wang J. , 2007. Historical earthquakes and a tsunami in BOHAI sea. Acta Seismologica Sinica, 29(5): 549—557. (in Chinese) doi: 10.3321/j.issn:0253-3782.2007.05.012
    [8] 吴家鸣, 郁苗, 朱良生, 2009. 桁架式近海结构物整体波浪荷载分析. 华南理工大学学报(自然科学版), 37(11): 1—6 doi: 10.3321/j.issn:1000-565X.2009.11.001

    Wu J. M. , Yu M. , Zhu L. S. , 2009. Analysis of integral wave load acting on truss-type offshore structure. Journal of South China University of Technology (Natural Science Edition), 37(11): 1—6. (in Chinese) doi: 10.3321/j.issn:1000-565X.2009.11.001
    [9] 谢海波, 彭良贵, 韩斌等, 2004. 热轧带钢层流冷却过程数学模型的参数化调优. 材料与冶金学报, 3(4): 303—307 doi: 10.3969/j.issn.1671-6620.2004.04.015

    Xie H. B. , Peng L. G. , Han B. , et al. , 2004. Parameter optimization of mathematic model in laminar cooling control system. Journal of Materials and Metallurgy, 3(4): 303—307. (in Chinese) doi: 10.3969/j.issn.1671-6620.2004.04.015
    [10] 薛永安, 杨海风, 黄江波等, 2020. 渤海海域浅层油气运移成藏理论技术创新与勘探突破. 中国海上油气, 32(2): 14—23

    Xue Y. A. , Yang H. F. , Huang J. B. , et al. , 2020. Technological and theoretical innovations in the shallow hydrocarbon migration and accumulation of the Bohai sea and the exploration breakthroughs. China Offshore Oil and Gas, 32(2): 14—23. (in Chinese)
    [11] 翟长海, 谢礼立, 2005. 抗震结构最不利设计地震动研究. 土木工程学报, 38(12): 51—58 doi: 10.3321/j.issn:1000-131X.2005.12.009

    Zhai C. H. , Xie L. L. , 2005. The severest design ground motions for seismic design and analysis of structures. China Civil Engineering Journal, 38(12): 51—58. (in Chinese) doi: 10.3321/j.issn:1000-131X.2005.12.009
    [12] 张大勇, 岳前进, 许宁等, 2015. 冰激自升式钻井平台的动力响应分析. 船舶力学, 19(8): 966—974 doi: 10.3969/j.issn.1007-7294.2015.08.011

    Zhang D. Y. , Yue Q. J. , Xu N. , et al. , 2015. Dynamic response analysis of jack-up drilling platforms induced by ice vibrations. Journal of Ship Mechanics, 19(8): 966—974. (in Chinese) doi: 10.3969/j.issn.1007-7294.2015.08.011
    [13] 张光发, 纪卓尚, 李铁骊等, 2011. 导管架下水系统三维模拟数学模型. 船舶力学, 15(S1): 48—57

    Zhang G. F. , Ji Z. S. , Li T. L. , et al. , 2011.3D model of numerical simulation for launching analysis of a jacket platform. Journal of Ship Mechanics, 15(S1): 48—57. (in Chinese)
    [14] 中国船级社, 2005. GD 04—2005 海上平台状态评定指南. 北京: 人民交通出版社.

    China Classification Society, 2005. GD 04—2005 Guidelines for assessment of offshore platform. Beijing: China Communications Press. (in Chinese)
    [15] 中华人民共和国交通运输部, 2013. JTS 145-2—2013 海港水文规范. 北京: 人民交通出版社.

    Ministry of Transport of the People's Republic of China, 2013. JTS 145-2—2013 Code of hydrology for sea harbour. Beijing: China Communications Press. (in Chinese)
    [16] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2012. GB 50009—2012 建筑结构荷载规范. 北京: 建筑工业出版社.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2012. GB 50009—2012 Load code for the design of building structures. Beijing: China Architecture & Building Press. (in Chinese)
    [17] 朱本瑞, 2014. 超强台风下导管架平台倒塌机理与动力灾变模拟研究. 青岛: 中国石油大学(华东).

    Zhu B. R., 2014. Research on collapse mechanism and dynamic catastrophe simulation for jacket platforms under super typhoon. Qingdao: China University of Petroleum East China). (in Chinese)
    [18] 左华楠, 2017. 恶劣风浪下深水导管架平台结构强度分析研究. 镇江: 江苏科技大学.

    Zuo H. N., 2017. Structural strength analysis of deepwater jacket platform under harsh wind and waves. Zhenjiang: Jiangsu University of Science and Technology. (in Chinese)
    [19] American Petroleum Institute, 2014. Recommended practice for planning, designing, and constructing fixed offshore platforms-working stress design. 22nd ed. Washington, DC: American Petroleum Institute.
    [20] Sharma R. K. , Domala V. , Sharma R. , 2019. Dynamic analysis of an offshore jacket platform with a tuned mass damper under the seismic and ice loads. Ocean Systems Engineering, 9(4): 369—390.
    [21] Wu Q. , Zhao W. , Zhu W. G. , et al. , 2018. A tuned mass damper with nonlinear magnetic force for vibration suppression with wide frequency range of offshore platform under earthquake loads. Shock and Vibration, 2018: 1505061.
  • 加载中
图(14) / 表(8)
计量
  • 文章访问数:  193
  • HTML全文浏览量:  65
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-20
  • 网络出版日期:  2022-05-31
  • 刊出日期:  2022-03-31

目录

    /

    返回文章
    返回