Dynamic Response Analysis of Offshore Jacket Platform under the Coupling Action of the Earthquake and Typhon
-
摘要: 针对地震-台风耦合作用下的近海导管架海洋平台,运用Morison方程将台风对导管架平台的拖曳力及波浪对导管架平台的拖曳力和惯性力施加在结构上,并在基底施加地震动,建立地震-台风耦合作用下的运动方程。通过模态分析,确定结构的基本自振频率,进而选取卓越频率与该频率较为接近的海底地震动进行输入。对通过数值模型计算得到的导管架平台动力响应,参考相关文献中的限值,对耦合作用下的平台进行安全评估,给出了近海导管架海洋平台在地震-台风耦合作用下的损伤状态评定标准。本文关于导管架平台动力响应的统计结果,对导管架结构性态设计具有一定参考意义。Abstract: In view of offshore jacket platform under the coupling action of earthquake and typhon, the drag force of typhon on the jacket platform and the drag force and inertial force of wave on the jacket platform are applied to the structure through Morison formulation, and the earthquake is applied to the base, establishing the equation of motion under the coupling action of earthquake and typhon. Through modal analysis, the basic natural frequency of the structure is determined, and the submarine ground motion with the dominant frequency close to this frequency is selected for input. For the dynamic response of the jacket platform calculated by the numerical model, the safety assessment of the platform under the coupling effect is carried out with reference to the limit value in the corresponding literature, and the evaluation criteria for damage status of offshore jacket offshore platforms under the coupling action of earthquake and typhoon are given. The statistics of the dynamic response results in this paper also have certain reference significance for the performance-based design of jacket structure.
-
Key words:
- Jacket platform /
- Multi disaster coupling /
- Dynamic response /
- Time-history analysis /
- Evaluation index
-
表 1 Q345钢应力-塑性应变参数
Table 1. Stress-plastic strain parameters of Q345
应力/MPa 塑性应变 276.00 0 300.48 1.4e-5 320.16 5.5e-5 333.96 1.24e-4 342.24 2.21e-4 345.00 3.45e-4 345.00 0.01338 表 2 前8阶自振频率
Table 2. The first 8 order natural frequencies
振型编号 自振频率/Hz 1 2.8018 2 2.8753 3 2.9002 4 3.3711 5 3.4598 6 6.1433 7 6.1440 8 7.0278 表 3 渤海海域风速
Table 3. Wind speed of Bohai sea
台风名称 风速/m·s−1 布拉万(2012) 20.8 利奇马(2019) 23 巴威(2020) 17.2 表 4 工况表
Table 4. Table of working conditions
地震动强度/g 风速/m·s−1 23 33.6 0 0.1 工况1 工况2 — 0.15 工况3 工况4 — 0.2 工况5 工况6 — 0.4 工况7 工况8 工况9 0 — 工况10 — 表 5 导管架平台损伤状态
Table 5. Definition of damage state of jacket platform
$ {\rm{RDA}} \leqslant {\rm{RD}}{{{A}}_{{\rm{ud}}}} $ $ {\rm{RD}}{{{A}}_{{\rm{ud}}}}{{ < \rm RDA}} \leqslant {\rm{RD}}{\rm{{A}}_{{\rm{ye}}}} $ $ {\rm{RD}}{{\rm{A}}_{{\rm{ye}}}}{{ < \rm RDA}} \leqslant {\rm{RD}}{{\rm{A}}_{{\rm{ult}}}} $ $ {\rm{RDA > RD}}{{\rm{A}}_{{\rm{ult}}}} $ 基本完好 轻微破坏 严重破坏 毁坏 表 6 各工况下导管架平台损伤状态
Table 6. Damage state of jacket platform under each working condition
工况 1 2 4 6 8 损伤状态 基本完好 轻微破坏 轻微破坏 轻微破坏 严重破坏 表 7 超指标构件数量统计
Table 7. Statistics on the number of super-index components
工况 导管架帽构件 导管架构件 超指标构件 1 0 0 0 2 5 0 5 4 8 0 8 6 8 2 10 8 8 8 16 表 8 不同损伤状态下超指标构件占比
Table 8. Proportion of super-index components under different damage states
损伤状态 超指标导管架帽构件比例 超指标导管架构件比例 基本完好 ≤0 ≤0 轻微破坏 ≤1/4 ≤1/20 严重破坏 ≤1/4 ≤1/5 -
[1] 董汝博, 李昕, 周晶, 2010. 考虑流固耦合的海洋储油罐平台地震反应分析. 船舶力学, 14(8): 887—893 doi: 10.3969/j.issn.1007-7294.2010.08.009Dong R. B. , Li X. , Zhou J. , 2010. Seismic analysis of offshore platform with oil storage tank including fluid-structure interaction. Journal of Ship Mechanics, 14(8): 887—893. (in Chinese) doi: 10.3969/j.issn.1007-7294.2010.08.009 [2] 何晓宇, 李宏男, 2007. 地震与波浪联合作用下海洋平台动力特性分析. 海洋工程, 25(3): 18—25 doi: 10.3969/j.issn.1005-9865.2007.03.003He X. Y. , Li H. N. , 2007. Dynamic analysis of offshore platform under seismic action and wave action. The Ocean Engineering, 25(3): 18—25. (in Chinese) doi: 10.3969/j.issn.1005-9865.2007.03.003 [3] 刘育丰, 彭燕菊, 王俊勤等, 2012. 渤海海域海洋平台抗震设防标准研究. 震灾防御技术, 7(2): 111—120 doi: 10.3969/j.issn.1673-5722.2012.02.001Liu Y. F. , Peng Y. J. , Wang J. Q. , et al. , 2012. Study on seismic fortification criteria of offshore platforms in Bohai Sea. Technology for Earthquake Disaster Prevention, 7(2): 111—120. (in Chinese) doi: 10.3969/j.issn.1673-5722.2012.02.001 [4] 毛晨曦, 李诗尧, 张亮泉, 2018. 典型通信铁塔抗震性能及地震易损性评估. 世界地震工程, 34(1): 63—71Mao C. X. , Li S. Y. , Zhang L. Q. , 2018. Seismic capacity and vulnerability of typical communication towers. World Earthquake Engineering, 34(1): 63—71. (in Chinese) [5] 孙久洋, 吕涛, 陈国明等, 2020. 基于耐震时程法强震下导管架平台动力响应分析. 振动与冲击, 39(20): 232—241Sun J. Y. , Lü T. , Chen G. M. , et al. , 2020. Dynamic response analysis of a jacket platform under strong earthquake based on an endurance time method. Journal of Vibration and Shock, 39(20): 232—241. (in Chinese) [6] 万桂梅, 周东红, 汤良杰, 2009. 渤海海域郯庐断裂带对油气成藏的控制作用. 石油与天然气地质, 30(4): 450—454, 461 doi: 10.3321/j.issn:0253-9985.2009.04.010Wan G. M. , Zhou D. H. , Tang L. J. , 2009. Control of the Tan-Lu fault zone on hydrocarbon accumulation in the Bohai Sea waters. Oil & Gas Geology, 30(4): 450—454, 461. (in Chinese) doi: 10.3321/j.issn:0253-9985.2009.04.010 [7] 王健, 2007. 渤海海域历史地震和海啸. 地震学报, 29(5): 549—557 doi: 10.3321/j.issn:0253-3782.2007.05.012Wang J. , 2007. Historical earthquakes and a tsunami in BOHAI sea. Acta Seismologica Sinica, 29(5): 549—557. (in Chinese) doi: 10.3321/j.issn:0253-3782.2007.05.012 [8] 吴家鸣, 郁苗, 朱良生, 2009. 桁架式近海结构物整体波浪荷载分析. 华南理工大学学报(自然科学版), 37(11): 1—6 doi: 10.3321/j.issn:1000-565X.2009.11.001Wu J. M. , Yu M. , Zhu L. S. , 2009. Analysis of integral wave load acting on truss-type offshore structure. Journal of South China University of Technology (Natural Science Edition), 37(11): 1—6. (in Chinese) doi: 10.3321/j.issn:1000-565X.2009.11.001 [9] 谢海波, 彭良贵, 韩斌等, 2004. 热轧带钢层流冷却过程数学模型的参数化调优. 材料与冶金学报, 3(4): 303—307 doi: 10.3969/j.issn.1671-6620.2004.04.015Xie H. B. , Peng L. G. , Han B. , et al. , 2004. Parameter optimization of mathematic model in laminar cooling control system. Journal of Materials and Metallurgy, 3(4): 303—307. (in Chinese) doi: 10.3969/j.issn.1671-6620.2004.04.015 [10] 薛永安, 杨海风, 黄江波等, 2020. 渤海海域浅层油气运移成藏理论技术创新与勘探突破. 中国海上油气, 32(2): 14—23Xue Y. A. , Yang H. F. , Huang J. B. , et al. , 2020. Technological and theoretical innovations in the shallow hydrocarbon migration and accumulation of the Bohai sea and the exploration breakthroughs. China Offshore Oil and Gas, 32(2): 14—23. (in Chinese) [11] 翟长海, 谢礼立, 2005. 抗震结构最不利设计地震动研究. 土木工程学报, 38(12): 51—58 doi: 10.3321/j.issn:1000-131X.2005.12.009Zhai C. H. , Xie L. L. , 2005. The severest design ground motions for seismic design and analysis of structures. China Civil Engineering Journal, 38(12): 51—58. (in Chinese) doi: 10.3321/j.issn:1000-131X.2005.12.009 [12] 张大勇, 岳前进, 许宁等, 2015. 冰激自升式钻井平台的动力响应分析. 船舶力学, 19(8): 966—974 doi: 10.3969/j.issn.1007-7294.2015.08.011Zhang D. Y. , Yue Q. J. , Xu N. , et al. , 2015. Dynamic response analysis of jack-up drilling platforms induced by ice vibrations. Journal of Ship Mechanics, 19(8): 966—974. (in Chinese) doi: 10.3969/j.issn.1007-7294.2015.08.011 [13] 张光发, 纪卓尚, 李铁骊等, 2011. 导管架下水系统三维模拟数学模型. 船舶力学, 15(S1): 48—57Zhang G. F. , Ji Z. S. , Li T. L. , et al. , 2011.3D model of numerical simulation for launching analysis of a jacket platform. Journal of Ship Mechanics, 15(S1): 48—57. (in Chinese) [14] 中国船级社, 2005. GD 04—2005 海上平台状态评定指南. 北京: 人民交通出版社.China Classification Society, 2005. GD 04—2005 Guidelines for assessment of offshore platform. Beijing: China Communications Press. (in Chinese) [15] 中华人民共和国交通运输部, 2013. JTS 145-2—2013 海港水文规范. 北京: 人民交通出版社.Ministry of Transport of the People's Republic of China, 2013. JTS 145-2—2013 Code of hydrology for sea harbour. Beijing: China Communications Press. (in Chinese) [16] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2012. GB 50009—2012 建筑结构荷载规范. 北京: 建筑工业出版社.Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2012. GB 50009—2012 Load code for the design of building structures. Beijing: China Architecture & Building Press. (in Chinese) [17] 朱本瑞, 2014. 超强台风下导管架平台倒塌机理与动力灾变模拟研究. 青岛: 中国石油大学(华东).Zhu B. R., 2014. Research on collapse mechanism and dynamic catastrophe simulation for jacket platforms under super typhoon. Qingdao: China University of Petroleum East China). (in Chinese) [18] 左华楠, 2017. 恶劣风浪下深水导管架平台结构强度分析研究. 镇江: 江苏科技大学.Zuo H. N., 2017. Structural strength analysis of deepwater jacket platform under harsh wind and waves. Zhenjiang: Jiangsu University of Science and Technology. (in Chinese) [19] American Petroleum Institute, 2014. Recommended practice for planning, designing, and constructing fixed offshore platforms-working stress design. 22nd ed. Washington, DC: American Petroleum Institute. [20] Sharma R. K. , Domala V. , Sharma R. , 2019. Dynamic analysis of an offshore jacket platform with a tuned mass damper under the seismic and ice loads. Ocean Systems Engineering, 9(4): 369—390. [21] Wu Q. , Zhao W. , Zhu W. G. , et al. , 2018. A tuned mass damper with nonlinear magnetic force for vibration suppression with wide frequency range of offshore platform under earthquake loads. Shock and Vibration, 2018: 1505061.