• ISSN 1673-5722
  • CN 11-5429/P

核电厂转运-清洗间地震反应分析

刘旭晨 李小军 王晓辉 陈苏 于跃 沈亮

刘旭晨,李小军,王晓辉,陈苏,于跃,沈亮,2022. 核电厂转运-清洗间地震反应分析. 震灾防御技术,17(1):124−131. doi:10.11899/zzfy20220113. doi: 10.11899/zzfy20220113
引用本文: 刘旭晨,李小军,王晓辉,陈苏,于跃,沈亮,2022. 核电厂转运-清洗间地震反应分析. 震灾防御技术,17(1):124−131. doi:10.11899/zzfy20220113. doi: 10.11899/zzfy20220113
Liu Xuchen, Li Xiaojun, Wang Xiaohui, Chen Su, Yu Yue, Shen Liang. Seismic Response Analysis of Transfer-purging Chamber in Nuclear Power Plant[J]. Technology for Earthquake Disaster Prevention, 2022, 17(1): 124-131. doi: 10.11899/zzfy20220113
Citation: Liu Xuchen, Li Xiaojun, Wang Xiaohui, Chen Su, Yu Yue, Shen Liang. Seismic Response Analysis of Transfer-purging Chamber in Nuclear Power Plant[J]. Technology for Earthquake Disaster Prevention, 2022, 17(1): 124-131. doi: 10.11899/zzfy20220113

核电厂转运-清洗间地震反应分析

doi: 10.11899/zzfy20220113
基金项目: 国家自然科学基金(51738001)
详细信息
    作者简介:

    刘旭晨,男,生于1993年。博士研究生。主要从事结构工程抗震方面的研究。E-mail: liuxuchen1993@163.com

    通讯作者:

    李小军,男,生于1965年。教授,博士生导师。主要从事地震工程研究工作。E-mail: beerli@vip.sina.com

Seismic Response Analysis of Transfer-purging Chamber in Nuclear Power Plant

  • 摘要: 转运-清洗间作为核电厂反应堆堆外换料系统中的主要设施,为反应堆换料操作提供了安全可靠的生物屏蔽空间,转运-清洗间采用的是双钢板重混凝土组合结构。本文基于有限元软件ABAQUS对转运-清洗间的抗震性能进行分析,包括地震动激励下结构的峰值应力、应变和动力特性。结果表明,在转运间的底部悬挑边缘部位存在应力集中,但是钢板、栓钉和重混凝土墙仍有充分的安全裕度。转运-清洗间的整体刚度较大,在设计基准地震动激励下结构反应的峰值加速度放大系数及峰值相对位移较小,结构具有良好的安全性和完整性,核电厂转运-清洗间的设计安全可靠。
  • 图  1  核电厂转运-清洗间有限元模型

    Figure  1.  Finite element model of transfer-purging chamber of nuclear power plant

    图  2  SL1地震动时程拟合目标谱

    Figure  2.  The fitting target spectra of SL1 ground motion time history

    图  3  SL2地震动时程拟合目标谱

    Figure  3.  The fitting target spectra of SL2 ground motion time history

    图  4  SL1和SL2的加速度时程

    Figure  4.  Acceleration time history of SL1 and SL2

    图  5  转运-清洗间前3阶振型

    Figure  5.  First three vibration modes of transfer-purging chamber

    图  6  钢板峰值应力云图(工况SL1)

    Figure  6.  Peak stress nephogram of steel plates in condition of SL1

    图  7  栓钉峰值应力云图(工况SL1)

    Figure  7.  Peak stress nephogram of studs in condition of SL1

    图  8  重混凝土峰值压应变云图(工况SL1)

    Figure  8.  Peak compressive strain nephogram of heavy concrete in condition of SL1

    图  9  钢板峰值应力云图(工况SL2)

    Figure  9.  Peak stress nephogram of studs in condition of SL2

    图  10  栓钉峰值应力云图(工况SL2)

    Figure  10.  Peak stress nephogram of studs in condition of SL2

    图  11  重混凝土峰值压应变云图(工况SL2)

    Figure  11.  Peak compressive strain nephogram of heavy concrete in condition of SL2

    图  12  观测点位置示意图

    Figure  12.  Schematic diagram of acceleration observation nodes

    图  13  转运-清洗间的峰值加速度放大系数(工况SL1)

    Figure  13.  Peak acceleration amplification factor of transfer-purging chamber in condition of SL1

    图  14  转运-清洗间的峰值加速度放大系数(工况SL2)

    Figure  14.  Peak acceleration amplification factor of transfer-purging chamber in condition of SL2

    图  15  转运-清洗间的峰值位移(工况SL1)

    Figure  15.  Peak displacement of transfer-purging chamber in condition of SL1

    图  16  转运-清洗间的峰值相对位移(工况SL2)

    Figure  16.  Peak displacement of transfer-purging chamber in condition of SL2

    表  1  材料本构关系的主要参数

    Table  1.   Main parameters of material constitutive relationship

    材料参数数值
    钢材(Q355)弹性模量E/MPa206000
    屈服强度/MPa355
    泊松比0.3
    ML15弹性模量E/MPa210000
    屈服强度/MPa270
    泊松比0.3
    重混凝土(C40)密度/Kg·m−33700
    弹性模量/MPa50000
    抗压应变设计值1450×10−6
    泊松比0.2
    膨胀角/°35
    偏心率0.1
    双轴抗压强度$ {f}_{b_0} $与单轴抗压强度$ {f}_{e_0} $的比值1.16
    粘性参数0.66667
    下载: 导出CSV
  • [1] 葛琪, 熊峰, 何涛, 2018. 钢板混凝土组合墙试验和有限元分析. 东南大学学报(自然科学版), 48(5): 885—895

    Ge Q. , Xiong F. , He T. , 2018. Testing and finite element analysis on steel-plate concrete composite wall. Journal of Southeast University (Natural Science Edition), 48(5): 885—895. (in Chinese)
    [2] 侯春林, 李小军, 戴志军, 2012. 人造地震动多阻尼反应谱拟合优化算法. 国际地震动态, (6): 303.
    [3] 李楠, 谷继品, 2008. 中国实验快堆转运-清洗室的力学分析. 原子能科学技术, 42(S2): 509—511

    Li N. , Gu J. P. , 2008. Numerical analysis of transfer and purge chamber for China experimental fast reactor. Atomic Energy Science and Technology, 42(S2): 509—511. (in Chinese)
    [4] 李小军, 李晓虎, 2017. 核电工程双钢板混凝土组合剪力墙面内受弯性能研究. 工程力学, 34(9): 43—53 doi: 10.6052/j.issn.1000-4750.2016.08.0665

    Li X. J. , Li X. H. , 2017. Study on in-plane flexural behavior of double steel plates and concrete infill composite shear walls for nuclear engineering. Engineering Mechanics, 34(9): 43—53. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.08.0665
    [5] 刘晶波, 王冬亮, 王宗纲等, 2019. 核工程双钢板-混凝土组合剪力墙面内受剪性能试验研究. 地震工程与工程振动, 39(5): 19—27

    Liu J. B. , Wang D. L. , Wang Z. G. , et al. , 2019. Experimental study on in-plane shear behavior of double-skin-composite shear walls in nuclear engineering. Earthquake Engineering and Engineering Dynamics, 39(5): 19—27. (in Chinese)
    [6] 熊峰, 何涛, 周宁, 2015. 核电站双钢板混凝土剪力墙抗剪强度研究. 湖南大学学报(自然科学版), 42(9): 33—41 doi: 10.3969/j.issn.1674-2974.2015.09.005

    Xiong F. , He T. , Zhou N. , 2015. Study on the shear strength of double steel plate composite shear wall in nuclear plant. Journal of Hunan University (Natural Sciences), 42(9): 33—41. (in Chinese) doi: 10.3969/j.issn.1674-2974.2015.09.005
    [7] 张有佳, 李小军, 2015. 基于钢板弹性屈曲理论的组合墙轴压试验研究. 应用基础与工程科学学报, 23(6): 1198—1209

    Zhang Y. J. , Li X. J. , 2015. Axial compression experimental study of composite walls based on steel plate elastic buckling theory. Journal of Basic Science and Engineering, 23(6): 1198—1209. (in Chinese).
    [8] 张有佳, 李小军, 贺秋梅等, 2016. 钢板混凝土组合墙体局部稳定性轴压试验研究. 土木工程学报, 49(1): 62—68

    Zhang Y. J. , Li X. J. , He Q. M. , et al. , 2016. Experimental study on local stability of composite walls with steel plates and filled concrete under concentric loads. China Civil Engineering Journal, 49(1): 62—68. (in Chinese)
    [9] 中华人民共和国住房和城乡建设部, 2011. GB 50010—2010 混凝土结构设计规范. 北京: 中国建筑工业出版社.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, 2011. GB 50010—2010 Code for design of concrete structures. Beijing: China Architecture & Building Press. (in Chinese)
    [10] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局, 2019. GB 50267—2019 核电厂抗震设计标准. 北京: 中国计划出版社.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, State Administration for Market Regulation, 2019. GB 50267—2019 Standard for seismic design of nuclear power plants. Beijing: China Planning Press. (in Chinese)
    [11] Akiyama H. , Sekimoto H. , Fukihara M. , et al. , 1991. A compression and shear loading test of concrete filled steel bearing wall. In: Transactions of the 11th international conference on structural mechanics in reactor technology (SMiRT-11). Tokyo, 323—328.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  141
  • HTML全文浏览量:  60
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-29
  • 网络出版日期:  2022-05-31
  • 刊出日期:  2022-03-31

目录

    /

    返回文章
    返回