• ISSN 1673-5722
  • CN 11-5429/P

新型便携式行业级无人机精灵4RTK定位精度分析

刘超 王银 余思汗 雷启云 杨顺

刘超,王银,余思汗,雷启云,杨顺,2022. 新型便携式行业级无人机精灵4RTK定位精度分析. 震灾防御技术,17(1):114−123. doi:10.11899/zzfy20220112. doi: 10.11899/zzfy20220112
引用本文: 刘超,王银,余思汗,雷启云,杨顺,2022. 新型便携式行业级无人机精灵4RTK定位精度分析. 震灾防御技术,17(1):114−123. doi:10.11899/zzfy20220112. doi: 10.11899/zzfy20220112
Liu Chao, Wang Yin, Yu Sihan, Lei Qiyun, Yang Shun. Positioning Accuracy Analysis of the New Portable Industry-level Unmanned Aerial Vehicle Phantom 4RTK[J]. Technology for Earthquake Disaster Prevention, 2022, 17(1): 114-123. doi: 10.11899/zzfy20220112
Citation: Liu Chao, Wang Yin, Yu Sihan, Lei Qiyun, Yang Shun. Positioning Accuracy Analysis of the New Portable Industry-level Unmanned Aerial Vehicle Phantom 4RTK[J]. Technology for Earthquake Disaster Prevention, 2022, 17(1): 114-123. doi: 10.11899/zzfy20220112

新型便携式行业级无人机精灵4RTK定位精度分析

doi: 10.11899/zzfy20220112
基金项目: 宁夏自然科学基金(2020AAC03443、2022AAC03688);地震科技星火计划项目(XH19047);宁夏地震科研基金(NX202206);宁夏地震局科技创新团队(CX2019-1)
详细信息
    作者简介:

    刘超,男,生于1991年。工程师。主要从事城市活断层探测与地震应急现场工作。E-mail:liuchao0426@126.com

    通讯作者:

    余思汗,男,生于1992年。工程师。主要从事地震应急技术与GIS应用研究工作。E-mail:251400967@qq.com

Positioning Accuracy Analysis of the New Portable Industry-level Unmanned Aerial Vehicle Phantom 4RTK

  • 摘要: 本文针对新型便携式行业级无人机精灵4RTK开展了实测数据的定位精度分析,从有、无控制点情况下的绝对定位精度和无控制点情况下的相对定位精度2方面入手,详细计算后者水平距离和高程差的测量误差,探讨网络RTK技术的无控制点情况在活动构造中的应用。结果表明,无人机精灵4RTK在天气较晴朗、飞行高度100 m、镜头角度正射向下、旁向和航向重叠率均为70%等实测条件下,有控制点情况下水平位置和高程测量误差均<4.5 cm,无控制点情况下水平位置测量误差<0.60 m、高程测量误差<1.90 m;无控制点情况下,当实际水平距离<300 m时,水平距离测量误差<0.100 m,当高程差<2.8 m时,高程差测量误差<0.100 m;以复合运动性质的发震断层为例,初步探讨认为无人机精灵4RTK的网络RTK技术在无控制点情况下提取活动构造的定量参数时,其水平位移量精度能够达到厘米级,垂直位错量精度可能达不到厘米级,当垂直位错量小于8.0 m时,精度能够达到0.157 m。
  • 图  1  Trimble R8差分GPS、地面控制点和检查点、航线规划

    Figure  1.  Trimble R8 differential GPS, ground control points and checkpoints, route planning

    图  2  数据处理流程图

    Figure  2.  The flow chart of data processing

    图  3  有控制点情况下误差分布直方图及正态分布曲线

    Figure  3.  Histogram and normal distribution curve of error distribution of variables at control points and checkpoints with control point

    图  4  无控制点情况下检查点各变量误差分布直方图及正态分布曲线

    Figure  4.  Histogram and normal distribution curve of error distribution of each variable at checkpoint without control point

    5  无控制点情况下水平距离和高程差测量误差分析

    5.  Measurement error analysis of horizontal distance and elevation difference without control point

    表  1  有控制点情况下的误差分析结果

    Table  1.   Error analysis results of control points and checkpoints with control point

    控制点
    编号
    X误差
    /cm
    Y误差
    /cm
    XY误差
    /cm
    Z误差
    /cm
    检查点
    编号
    X误差
    /cm
    Y误差
    /cm
    XY误差
    /cm
    Z误差
    /cm
    K10.1430.8210.834−0.208J12.1723.6954.2860.100
    K2−0.3120.2370.778−0.345J21.7481.9732.636−0.700
    K3−0.330−0.0340.6921.548J3−2.530−1.6343.012−1.716
    K4−0.2440.2360.395−2.303J4−1.683−1.6252.339−1.579
    K51.133−0.3130.5290.219J52.1612.3273.1763.300
    K60.5971.4111.7572.349J6−1.740−1.5342.320−1.538
    K7−0.623−0.0290.6190.212J7−1.620−2.1882.7221.500
    K81.0170.0681.4201.066J8−2.629−0.3142.6481.000
    K9−1.2550.4020.4451.018J9−3.329−1.3023.5752.300
    K10−0.705−0.3280.392−0.299J101.4242.3372.737−0.200
    K11−0.051−0.6900.331−0.764J11−2.310−2.9353.7351.500
    K12−0.324−0.2250.339−0.958J12−2.764−1.0332.9511.500
    K13−0.005−0.5291.176−1.112J130.8080.2400.8432.300
    K140.379−1.7161.532−1.883J14−1.872−2.0672.789−1.400
    K15−0.4220.4540.6242.221J150.9702.1212.332−0.300
    K161.3000.5721.019−0.026J16−0.2411.8621.8782.200
    K17−0.295−0.3331.318−0.810J17−0.3102.8052.8221.200
    均值0.5370.4940.8351.020均值1.7831.8822.7531.402
    中误差0.6700.6660.9451.274中误差1.9642.0652.8501.643
    注:控制点和检查点的X误差、Y误差和Z误差均值为其绝对值的均值。
    下载: 导出CSV

    表  2  无控制点情况下检查点误差分析结果

    Table  2.   Error analysis results of checkpoint without control point

    检查点
    序号
    X误差
    /m
    Y误差
    /m
    XY误差
    /m
    Z误差
    /m
    检查点
    序号
    X误差
    /m
    Y误差
    /m
    XY误差
    /m
    Z误差
    /m
    J1−0.352−0.4230.550−1.843J11−0.318−0.4530.553−1.637
    J2−0.328−0.4160.530−1.707J12−0.321−0.4440.548−1.631
    J3−0.361−0.4600.585−1.716J13−0.274−0.4150.497−1.578
    J4−0.339−0.4430.558−1.579J14−0.281−0.4500.530−1.804
    J5−0.299−0.3840.487−1.497J15−0.281−0.4500.531−1.842
    J6−0.306−0.4300.528−1.538J16−0.340−0.4450.560−1.849
    J7−0.313−0.4510.549−1.632J17−0.360−0.4320.562−1.793
    J8−0.348−0.4530.572−1.741均值0.3200.4390.5431.694
    J9−0.325−0.4820.582−1.726中误差0.3210.4390.5441.698
    J10−0.293−0.4250.517−1.688
    注:控制点和检查点的X误差、Y误差和Z误差均值为其绝对值的均值。
    下载: 导出CSV

    表  3  强震造成地表破裂的参数表

    Table  3.   Parameter table of surface rupture caused by strong earthquake

    序号发震时间地点震级/M发震断层性质地表破裂
    水平位移量/m垂直位错量/m
    11607-07-12甘肃酒泉逆—左旋3.01.0
    21679-09-02三河平谷8右旋—正3.93.2
    31709-10-14宁夏中卫南逆—左旋5.0~6.01.0~2.0
    41713-02-26云南寻甸正—左旋2.32.0
    51739-01-03宁夏银川、平罗8正—右旋1.50.9
    61902-08-22新疆阿图什左旋—逆20.05.0
    71920-12-16宁夏海原8.5逆—左旋10.0~11.07.0~8.0
    81927-05-23甘肃古浪8.0逆—左旋6.07.1
    91933-08-25四川叠溪7.5逆—左旋5.03.0~4.0
    101937-01-07青海托索湖7.5逆—左旋8.05.0~6.0
    111947-03-17青海达日7.7逆—左旋5.0~10.05.0~6.0
    121951-11-18西藏当雄8.0正—右旋7.31.5
    131952-08-18西藏那曲西南7.5左旋—正5.05.5
    141954-02-11甘肃山丹右旋—正2.9~4.01.0~1.2
    151970-01-05云南通海7.8逆—右旋3.30.5
    161985-08-23新疆乌恰7.4右旋—逆1.61.6
    171996-02-03云南丽江7.0左旋—正0.30.3
    182008-03-21新疆于田7.3左旋—正1.82.0
    192008-05-12四川汶川8.0右旋—逆4.0~5.04.0~5.0
    202021-5-22青海玛多7.4逆—左旋2.9~4.01.0~2.0
    注:数据源自张维岐等,1988;邓起东等,1989;国家地震局地质研究所等,1990;黄静宜,2016;潘家伟等,2021;王未来等,2021
    下载: 导出CSV
  • [1] 程理, 苏刚, 李光涛等, 2019. 云南中甸-大具断裂上新发现的地震地表破裂带. 震灾防御技术, 14(4): 797—809 doi: 10.11899/zzfy20190411

    Cheng L. , Su G. , Li G. T. , et al. , 2019. New finding of earthquake surface rupture on Zhongdian-Daju fault. Technology for Earthquake Disaster Prevention, 14(4): 797—809. (in Chinese) doi: 10.11899/zzfy20190411
    [2] 邓起东, 张维岐, 张培震等, 1989. 海原走滑断裂带及其尾端挤压构造. 地震地质, 11(1): 1—14.

    Deng Q. D. , Zhang W. Q. , Zhang P. Z. , et al. , 1989. Haiyuan strike-slip fault zone and its compressional structures of the end. Seismology and Geology, 11(1): 1—14. (in Chinese)
    [3] 邓起东, 于贵华, 叶文华, 1992. 地震地表破裂参数与震级关系的研究. 北京: 地震出版社.

    Deng Q. D. , Yu G. H. , Ye W. H. , 1992. Relationship between earthquake magnitude and parameters of surface ruptures associated with historical earthquakes. Beijing: Seismological Press. (in Chinese)
    [4] 国家地震局地质研究所, 宁夏回族自治区地震局, 1990. 海原活动断裂带. 北京: 地震出版社.
    [5] 李伟, 张红月, 孙衍建等, 2021. 地区级实景三维模型色彩均衡方法实验. 山东国土资源, 37(7): 86—90

    Li W. , Zhang H. Y. , Sun Y. J. , et al. , 2021. Experiment on color equalization method of regional real scene 3D model. ShangDong Land and Resources, 37(7): 86—90. (in Chinese)
    [6] 黄静宜, 2016. 强震地表破裂评估方法研究. 哈尔滨: 中国地震局工程力学研究所.

    Huang J. Y., 2016. Research on the method for evaluating the earthquake surface rupture. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese)
    [7] 李冀, 熊晶, 熊保颂等, 2021. 便携式消费级无人机相机标定有效性评估. 测绘通报, (4): 131—135

    Li J. , Xiong J. , Xiong B. S. , et al. , 2021. Effectiveness evaluation of camera calibration for portable consumer UAV. Bulletin of Surveying and Mapping, (4): 131—135. (in Chinese)
    [8] 刘超, 雷启云, 余思汗等, 2021a. 基于无人机摄影测量技术的地震地表破裂带定量参数提取——以1709年中卫南M7½地震为例. 地震学报, 43(1): 113—123

    Liu C. , Lei Q. Y. , Yu S. H. , et al. , 2021a. Using UAV photogrammetry technology to extract the quantitative parameters of earthquake surface rupture zone: a case study of the southern Zhongwei M7½ earthquake in 1709. Acta Seismologica Sinica, 43(1): 113—123. (in Chinese)
    [9] 刘超, 杜鹏, 王银等, 2021b. 基于无人机摄影测量技术研究有无地面控制点的差异性在地震方面的应用. 华南地震, 41(1): 84—93

    Liu C. , Du P. , Wang Y. , et al. , 2021b. Research on the application of the difference with or without ground control points in earthquake based on UAV photogrammetry technology. South China Journal of Seismology, 41(1): 84—93. (in Chinese)
    [10] 潘家伟, 白明坤, 李超等, 2021.2021年5月22日青海玛多MS7.4地震地表破裂带及发震构造. 地质学报, 95(6): 1655—1670 doi: 10.3969/j.issn.0001-5717.2021.06.001

    Pan J. W. , Bai M. K. , Li C. , et al. , 2021. Coseismic surface rupture and seismogenic structure of the 2021-05-22 Maduo (Qinghai) MS7.4 earthquake. Acta Geologica Sinica, 95(6): 1655—1670. (in Chinese) doi: 10.3969/j.issn.0001-5717.2021.06.001
    [11] 王未来, 房立华, 吴建平等, 2021. 2021年青海玛多MS7.4地震序列精定位研究. 中国科学: 地球科学, 51(7): 1193—1202.

    Wang W. L., Fang L. H., Wu J. P., et al., 2021. Aftershock sequence relocation of the 2021 MS7.4 Maduo earthquake, Qinghai, China. Science China Earth Sciences, 64(8): 1371—1380. (in Chinese)
    [12] 魏占玉, Ramon A, 何宏林等, 2015. 基于SfM方法的高密度点云数据生成及精度分析. 地震地质, 37(2): 636—648 doi: 10.3969/j.issn.0253-4967.2015.02.024

    Wei Z. Y. , Ramon A. , He H. L. , et al. , 2015. Accuracy analysis of terrain point cloud acquired by “Structure from Motion” using aerial photos. Seismology and Geology, 37(2): 636—648. (in Chinese) doi: 10.3969/j.issn.0253-4967.2015.02.024
    [13] 熊保颂, 2020. 基于便携式无人机SfM方法的活动构造地貌位错测量应用研究. 武汉: 中国地震局地震研究所.

    Xiong B. S., 2020. Offset measurement along active fault based on portable UAV and structure from motion. Wuhan: Institute of Seismology, China Earthquake Administration. (in Chinese)
    [14] 熊保颂, 李雪, 2020. 基于便携式无人机SfM方法的活动构造地貌位错测量——以阿尔金断裂中段为例. 科学技术与工程, 20(26): 10848—10855. doi: 10.3969/j.issn.1671-1815.2020.26.044

    Xiong B. S. , Li X. , 2020. Offset measurement along active fault based on portable unmanned aerial vehicle and structure from motion: a case study of the middle section in Altyn-Tagh fault. Science Technology and Engineering, 20(26): 10848—10855. (in Chinese) doi: 10.3969/j.issn.1671-1815.2020.26.044
    [15] 张维岐, 焦德成, 柴炽章等, 1988. 宁夏香山-天景山弧形断裂带新活动特征及1709年中卫南7½级地震形变带. 地震地质, 10(3): 12—20

    Zhang W. Q. , Jiao D. C. , Chai C. Z. , et al. , 1988. Neotectonic features of the Xiangshan-Tianjingshan arc fracture zone and the seismic deformation zone of 1709 south of Zhongwei M=7½ earthquake. Seismology and Geology, 10(3): 12—20. (in Chinese)
    [16] 赵云景, 龚绪才, 杜文俊等, 2015. PhotoScan Pro软件在无人机应急航摄中的应用. 国土资源遥感, 27(4);179—182.

    Zhao Y. J., Gong X. C., Du W. J., et al., 2015. UAV imagery data processing for emergency response based on PhotoScan Pro. Remote Sensing for Land & Resources, 27(4): 179—182. (in Chinese)
    [17] 中国地震局, 2019. DB/T 71—2018 活动断层探察 断错地貌测量. 北京: 中国标准出版社.

    China Earthquake Administration, 2019. DB/T 71—2018 Active fault survey—Measurement of faulted landform. Beijing: Standards Press of China. (in Chinese)
    [18] James M. R. , Robson S. , 2012. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. Journal of Geophysical Research: Earth Surface, 117(F3): F03017.
    [19] Lucieer A. , De Jong S. M. , Turner D. , 2014. Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Progress in Physical Geography: Earth and Environment, 38(1): 97—116.
    [20] Ryan J. C. , Hubbard A. L. , Box J. E. , et al. , 2015. UAV photogrammetry and structure from motion to assess calving dynamics at Store Glacier, a large outlet draining the Greenland ice sheet. The Cryosphere, 9(1): 1—11.
    [21] Snavely N. , Seitz S. M. , Szeliski R. , 2008. Modeling the world from internet photo collections. International Journal of Computer Vision, 80(2): 189—210.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  210
  • HTML全文浏览量:  68
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-07
  • 网络出版日期:  2022-05-31
  • 刊出日期:  2022-03-31

目录

    /

    返回文章
    返回