Investigation and Prevention Suggestion of Earthquake Disaster in the Extreme Earthquake Area of MS6.9 Earthquake in Menyuan County, Qinghai Province
-
摘要: 北京时间2022年1月8日1时45分青海省海北藏族自治州门源县(37.77°N,101.26°E)发生6.9级地震,此次地震极震区为距震中4 km的兰新高铁硫磺沟大桥附近(Ⅸ度区,面积约157 km2)。调查结果显示,在极震区大西沟至硫磺沟区域,道路、桥梁及房屋破坏较严重。沿区域内长约22 km的托来山-冷龙岭断裂带附近,道路形成多处裂缝与挤压鼓包,桥梁整体倾斜移位,房屋不同程度破坏。对极震区兰新高铁硫磺沟大桥及周边道路、房屋进行实地调查与震害分析,提出灾后重建及震害防御意见:对于灾区房屋建筑,组织专业技术人员进行详细调查及安全鉴定;建议定期对房屋建筑进行隐患排查及加固;对于兰新高铁硫磺沟大桥,建议原地修建,加设减隔震装置、连梁及柔性限位装置。Abstract: At 1:45 a.m. on Jan 8th, 2022, a magnitude 6.9 earthquake occurred in Menyuan County (37.77°N, 101.26°E), Haibei Tibetan Autonomous Prefecture, Qinghai Province. The epicenter of the earthquake is near the Liuhuanggou Bridge on the Lanxin high-speed railway, which is 4 km away from the epicenter (the area of earthquake intensity 9 is about 157 km2). The survey results show that roads, bridges and houses were seriously damaged from Daxigou to Liuhuanggou in the extreme disaster area. In the vicinity of the 22 km Long Tuolaishan-Lenglongling fault zone in the region, it can be seen that the damage type of several cracks and extrusion bulges were formed on the ground, the bridge tilted and shifted as a whole, and the house was damaged to varying degrees. The field investigations and earthquake disaster analysis were carried out on the Lanxin High-speed Railway Liuhuanggou Bridge and surrounding road and houses in the extreme disaster zone, and relevant suggestion on post-earthquake reconstruction and earthquake disaster prevention were put forward: Conducting detailed house safety appraisal by the professional personnel of housing construction organization in disaster area; Suggesting to conduct hidden danger investigation and reinforcement work on housing construction regularly; For the Liuhuanggou bridge, it is recommended to rebuild in situ with shock-absorbing and isolating devices, limiting and connecting beam device.
-
表 1 2022年门源MS6.9地震震源参数
Table 1. Source parameters for the 2022 Menyuan MS6.9 earthquakes
来源 纬度 经度 震级/MS 走向/° 倾角/° 滑动角/° 深度/km 中国地震台网中心 37.770°N 101.260°E 6.9 — — — 10.0 USGS 37.815°N 101.278°E 6.6 104 88 15 11.5 GCMT 37.800°N 101.310°E 6.7 104 82 1 14.8 GFZ 37.810°N 101.340°E 6.6 285 82 16 15.0 表 2 2022年门源MS6.9地震强震动记录分析
Table 2. Analysis of strong vibration records for the 2022 Menyuan MS 6.9 earthquakes
台站
名称台站经度 台站纬度 震中距/km 震中
方位角/°PGA/cm·s−2 PGV/cm·s−1 仪器
烈度/°EW NS UD EW NS UD C0028 37.7°N 101.3°E 7.8 324.6 −456.9 445.0 355.3 27.6 23.4 12.0 8.2 C0029 37.6°N 101.2°E 13.7 4.4 210.8 −144.1 132.7 −32.6 16.6 7.6 8.3 C0036 37.8°N 101.1°E 15.1 120.0 −136.0 −134.6 −122.4 −18.7 −30.4 18.7 8.2 C0027 37.6°N 101.4°E 18.0 332.4 −242.6 198.7 −114.3 16.1 9.6 −7.6 7.6 表 3 硫磺沟大桥场地等效剪切波速
Table 3. Equivalent shear wave velocity of Liuhuanggou bridge site
钻孔编号 等效剪切波速/m·s−1 覆盖层厚度/m LHG-3 365 24.0 LHG-7 398 18.0 表 4 极震区不同结构类型房屋震害调查表
Table 4. Investigation on earthquake disaster of buildings with different structures in the extreme areas
调查点 结构类型 砖混结构 轻钢结构 土石结构 砖木结构 数量/间 面积/m2 破坏情况 数量/间 面积/m2 破坏情况 数量/间 面积/m2 破坏情况 数量/间 面积/m2 破坏情况 1 1 20 轻微破坏 — — — — — — — — — 2 — — — 26 1000 16间基本完好
8间轻微破坏
2间中等破坏— — — — — — 3 — — — 46 2 000 42间基本完好
4间轻微破坏— — — — — — 4 — — — 2 30 基本完好 2 200 毁坏 — — — 5 — — — — — — — — — 1 15 毁坏 6 — — — — — — — — — 1 20 毁坏 总计 1 20 — 74 3030 — 2 200 — 2 35 — -
[1] 何文贵, 刘百篪, 袁道阳等, 2000. 冷龙岭活动断裂的滑动速率研究. 西北地震学报, 22(1): 90—97He W. G. , Liu B. C. , Yuan D. Y. , et al. , 2000. Research on slip rates of the Lenglongling active fault zone. Northwestern Seismological Journal, 22(1): 90—97. (in Chinese) [2] 胡朝忠, 杨攀新, 李智敏等, 2016.2016年1月21日青海门源6.4级地震的发震机制探讨. 地球物理学报, 59(5): 1637—1646 doi: 10.6038/cjg20160509Hu C. Z. , Yang P. X. , Li Z. M. , et al. , 2016. Seismogenic mechanism of the 21 January 2016 Menyuan, Qinghai MS6.4 earthquake. Chinese Journal of Geophysics, 59(5): 1637—1646. (in Chinese) doi: 10.6038/cjg20160509 [3] 黄勇, 王君杰, 韩鹏等, 2010. 考虑支座破坏的连续梁桥地震反应分析. 土木工程学报, 43(S2): 217—223Huang Y. , Wang J. J. , Han P. , et al. , 2010. Seismic response analysis of continuous bridges taking account of bearing failure. China Civil Engineering Journal, 43(S2): 217—223. (in Chinese) [4] 蒋一然, 宁杰远, 温景充等, 2022. 高铁地震波场中的多普勒效应及应用. 中国科学: 地球科学, 52(3): 438—449.Jiang Y. R. , Ning J. Y. , Wen J. C. , et al. , 2022. Doppler effect in high-speed rail seismic wavefield and its application. Science China Earth Sciences, 65(3): 414—425. (in Chinese) [5] 李红, 2011. 玉树地震房屋震害的几点启示. 青海师范大学学报(自然科学版), 27(3): 87—89 doi: 10.3969/j.issn.1001-7542.2011.03.023Li H. , 2011. Several views from Yushu earthquake damages on the houses. Journal of Qinghai Normal University (Natural Science), 27(3): 87—89. (in Chinese) doi: 10.3969/j.issn.1001-7542.2011.03.023 [6] 李鑫, 姚生海, 殷翔等, 2021a. 青海玛多7.4级地震极震区震灾调查及分析. 震灾防御技术, 16(3): 429—436Li X. , Yao S. H. , Yin X. , et al. , 2021a. Investigation and analysis of earthquake disaster in the extreme earthquake area of MS7.4 earthquake in Qinghai Province. Technology for Earthquake Disaster Prevention, 16(3): 429—436. (in Chinese) [7] 李鑫, 殷翔, 姚生海等, 2021b. 青海玛多7.4级地震重灾区房屋震灾调查及分析. 地震工程学报, 43(4): 896—902Li X. , Yin X. , Yao S. H. , et al. , 2021b. Investigation and analysis of earthquake disasters of houses in the stricken areas of Maduo M7.4 earthquake in Qinghai Province. China Earthquake Engineering Journal, 43(4): 896—902. (in Chinese) [8] 李振洪, 韩炳权, 刘振江等, 2022. InSAR数据约束下的2016年和2022年青海门源地震震源参数及其滑动分布. 武汉大学学报(信息科学版), 1—15. (2022-01-13). https: //kns. cnki. net/kcms/detail/detail. aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=WHCH20220113000&uniplatform=NZKPT&v=7ezb_b4zijR-Rvx9NvQtho8_rGD3PRIqoo9xZV3eZHzPyNvlFQbRwuh-ybDuW5RV.Li Z. H., Han B. Q., Liu Z. J., et al., 2022. Source parameters and slip distributions of the 2016 and 2022 Menyuan, Qinghai earthquakes constrained by InSAR observations. Geomatics and Information Science of Wuhan University, 1—15. (2022-01-13). https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=WHCH20220113000&uniplatform=NZKPT&v=7ezb_b4zijR-Rvx9NvQtho8_rGD3PRIqoo9xZV3eZHzPyNvlFQbRwuh-ybDuW5RV. (in Chinese) [9] 刘佳, 2013. 桥梁球形支座用新型复合滑板材料的结构、性能与机理研究. 北京: 北京化工大学.Liu J., 2013. Strcture, performance and mechanism research of new composite board for bridge spherical bearing. Beijing: Beijing University of Chemical Technology. (in Chinese) [10] 罗春燕, 2011. 玉树地震中房屋结构的震害分析. 山西建筑, 37(26): 53—54 doi: 10.3969/j.issn.1009-6825.2011.26.031Luo C. Y. , 2011. On analysis of earthquake diseases of house structures in Yushu earthquake. Shanxi Architecture, 37(26): 53—54. (in Chinese) doi: 10.3969/j.issn.1009-6825.2011.26.031 [11] 罗全波, 陈学良, 高孟潭等, 2018. 近断层速度脉冲与震源机制的关系浅析. 震灾防御技术, 13(3): 646—661Luo Q. B. , Chen X. L. , Gao M. T. , et al. , 2018. Relationship between Near-fault velocity pulse and focal mechanism. Technology for Earthquake Disaster Prevention, 13(3): 646—661. (in Chinese) [12] 王青桥, 韦晓, 王君杰, 2009. 桥梁桩基震害特点及其破坏机理. 震灾防御技术, 4(2): 167—173 doi: 10.3969/j.issn.1673-5722.2009.02.005Wang Q. Q. , Wei X. , Wang J. J. , 2009. Characteristics and mechanisms of earthquake damage of bridge pile foundation. Technology for Earthquake Disaster Prevention, 4(2): 167—173. (in Chinese) doi: 10.3969/j.issn.1673-5722.2009.02.005