• ISSN 1673-5722
  • CN 11-5429/P

巴彦浩特断裂北段晚第四纪活动特征及其区域地震构造意义

陈桂华 李忠武 黄雄南

陈桂华,李忠武,黄雄南,2022. 巴彦浩特断裂北段晚第四纪活动特征及其区域地震构造意义. 震灾防御技术,17(1):28−37. doi:10.11899/zzfy20220103. doi: 10.11899/zzfy20220103
引用本文: 陈桂华,李忠武,黄雄南,2022. 巴彦浩特断裂北段晚第四纪活动特征及其区域地震构造意义. 震灾防御技术,17(1):28−37. doi:10.11899/zzfy20220103. doi: 10.11899/zzfy20220103
Chen Guihua, Li Zhongwu, Huang Xiongnan. Late Quaternary Activity of the Northern Section of the Bayanhaote Fault and Its Implications for Regional Seismotectonics[J]. Technology for Earthquake Disaster Prevention, 2022, 17(1): 28-37. doi: 10.11899/zzfy20220103
Citation: Chen Guihua, Li Zhongwu, Huang Xiongnan. Late Quaternary Activity of the Northern Section of the Bayanhaote Fault and Its Implications for Regional Seismotectonics[J]. Technology for Earthquake Disaster Prevention, 2022, 17(1): 28-37. doi: 10.11899/zzfy20220103

巴彦浩特断裂北段晚第四纪活动特征及其区域地震构造意义

doi: 10.11899/zzfy20220103
基金项目: 国家重点研发计划(2018YFC1504201)
详细信息
    作者简介:

    陈桂华,男,生于1977年。副研究员。主要从事活动构造、地震地质等研究工作。E-mail:guihuachen@ies.ac.cn

Late Quaternary Activity of the Northern Section of the Bayanhaote Fault and Its Implications for Regional Seismotectonics

  • 摘要: 巴彦浩特断裂位于阿拉善地块与鄂尔多斯地块相互作用的边界构造带上,其晚第四纪活动特征和古地震数据对全面理解贺兰山周边区域地震构造和地震危险性具有重要意义,为此在研究相对薄弱的巴彦浩特断裂北段开展了断错地貌和古地震槽探研究。观测显示巴彦浩特断裂阿拉善左旗以北段以右旋走滑活动为主兼具逆倾滑,断层西盘相对抬升,在浅表形成半正花状构造组合。年代(56.28±4.04)~(82.2±5.78)ka的冲洪积地貌面上冲沟断错137 m,并在东侧形成断塞塘地貌,估计断层右旋走滑速率为1.67~2.43 mm/a。探槽揭示了3次具有显著地表逆倾滑破裂的强震事件,时间分别为(56.28±4.04)~(55.33±3.04)、(32.79±2.22)~(13.76±1.1)、(13.76±1.1)~(7.86±0.43)ka,逆倾滑量分别为0.44、0.35、0.29 m。与前人在巴彦浩特断裂南段的古地震研究进行对比,可知这3次古地震可能仅为部分事件记录。结合已有研究成果建立了贺兰山周边区域地震构造模型,贺兰山西侧右旋走滑的巴彦浩特断裂强震发震能力不容忽视,贺兰山两侧盆地不同性质断裂系共同构成了阿拉善地块与鄂尔多斯地块的活动边界构造带。
  • 图  1  巴彦浩特断裂区域地质构造背景

    Figure  1.  Regional geological setting of the Bayanhaote fault

    图  2  苏木图南观测点

    Figure  2.  Field site to the south of Sumutu village

    图  3  苏木图南观测点野外照片

    Figure  3.  Field photos at the site to the south of Sumutu village

    图  4  苏木图南探槽北壁

    Figure  4.  The north wall of the trench at the site to the south of the Sumutu village

    图  5  贺兰山周边区域地震构造模式

    Figure  5.  Seismotectonic model of the Helanshan and its adjacent region

  • [1] 蔡利飘, 周娟, 2018. 银川盆地断裂体系发育特征及其对盆地的控制作用. 油气地球物理, 16(2): 53—59

    Cai L. P. , Zhou J. , 2018. Development characteristics of the fault system in Yinchuan Basin and its control action on the Basin. Petroleum Geophysics, 16(2): 53—59. (in Chinese)
    [2] 邓起东, 程绍平, 闵伟等, 1999. 鄂尔多斯块体新生代构造活动和动力学的讨论. 地质力学学报, 5(3): 13—21 doi: 10.3969/j.issn.1006-6616.1999.03.003

    Deng Q. D. , Cheng S. P. , Min W. , et al. , 1999. Discussion on Cenozoic tectonics and dynamics of Ordos block. Journal of Geomechanics, 5(3): 13—21. (in Chinese) doi: 10.3969/j.issn.1006-6616.1999.03.003
    [3] 方盛明, 赵成彬, 柴炽章等, 2009. 银川断陷盆地地壳结构与构造的地震学证据. 地球物理学报, 52(7): 1768—1775 doi: 10.3969/j.issn.0001-5733.2009.07.010

    Fang S. M. , Zhao C. B. , Chai C. Z. , et al. , 2009. Seismic evidence of crustal structures in the Yinchuan faulted basin. Chinese Journal of Geophysics, 52(7): 1768—1775. (in Chinese) doi: 10.3969/j.issn.0001-5733.2009.07.010
    [4] 郭宝震, 塔拉, 周海涛等, 2017. 基于精密水准的鄂尔多斯西北缘现今垂直运动分析. 震灾防御技术, 12(3): 523—528

    Guo B. Z. , Ta L. , Zhou H. T. , et al. , 2007. Current vertical motion analysis of northwestern margin of Ordos Based on precise leveling. Technology for Earthquake Disaster Prevention, 12(3): 523—528. (in Chinese)
    [5] 国家地震局“鄂尔多斯活动断裂系”课题组. 1988. 鄂尔多斯周缘活动断裂系. 北京: 地震出版社.
    [6] 郭祥云, 蒋长胜, 王晓山等, 2017. 鄂尔多斯块体周缘中小地震震源机制及应力场特征. 大地测量与地球动力学, 37(7): 675—685

    Guo X. Y. , Jiang C. S. , Wang X. S. , et al. , 2017. Characteristics of small to moderate focal mechanism solutions stress field of the Circum-Ordos block. Journal of Geodesy and Geodynamics, 37(7): 675—685. (in Chinese)
    [7] 黄雄南, 张家声, 李天斌等, 2012. 南北地震带北段与蒙古中部活动断裂构造特征. 地震地质, 34(4): 637—658 doi: 10.3969/j.issn.0253-4967.2012.04.009

    Huang X. N. , Zhang J. S. , Li T. B. , et al. , 2012. Characteristics of active faults between the north segment of the North—South seismic belt and the central Mongolia. Seismology and Geology, 34(4): 637—658. (in Chinese) doi: 10.3969/j.issn.0253-4967.2012.04.009
    [8] 荆振杰, 谢富仁, 张世民等, 2019. 巴彦浩特断裂1: 50000活动断层填图数据库及说明书. (2019-01-01) [2021-01-01]. https://www.activefault-datacenter.cn/data_share.
    [9] 雷启云, 2016. 青藏高原东北缘弧形构造带的扩展与华北西缘银川盆地的演化. 北京: 中国地震局地质研究所.

    Lei Q. Y. , 2016. The extension of the arc tectonic belt in the northeastern margin of the Tibet plateau and the evolution of the Yinchuan Basin in the western margin of the North China. Beijing: Institute of Geology, China Earthquake Administrator. (in Chinese)
    [10] 雷启云, 张培震, 郑文俊等, 2017. 贺兰山西麓断裂右旋走滑的地质地貌证据及其构造意义. 地震地质, 39(6): 1297—1315 doi: 10.3969/j.issn.0253-4967.2017.06.014

    Lei Q. Y. , Zhang P. Z. , Zheng W. J. , et al. , 2017. Geological and geomorphic evidence for dextral strike slip of the Helan Shan west-piedmont fault and its tectonic implications. Seismology and Geology, 39(6): 1297—1315. (in Chinese) doi: 10.3969/j.issn.0253-4967.2017.06.014
    [11] 刘保金, 酆少英, 姬计法等, 2017. 贺兰山和银川盆地的岩石圈结构和断裂特征—深地震反射剖面结果. 中国科学: 地球科学, 47(2): 179—190.

    Liu B. J., Feng S. Y., Ji J. F., et al., 2017. Lithospheric structure and faulting characteristics of the Helan Mountains and Yinchuan Basin: Results of deep seismic reflection profiling. Science China Earth Sciences, 60(3): 589—601. (in Chinese)
    [12] 刘建辉, 张培震, 郑德文等, 2010. 贺兰山晚新生代隆升的剥露特征及其隆升模式. 中国科学: 地球科学, 40(1): 50—60.

    Liu J. H., Zhang P. Z., Zheng D. W., et al., 2010. Pattern and timing of late Cenozoic rapid exhumation and uplift of the Helan Mountain, China. Science China Earth Science, 53(3): 345—355. (in Chinese)
    [13] 刘绍平, 刘学锋, 2002. 巴彦浩特盆地的构造类型. 西南石油学院学报, 24(3): 24—27

    Liu S. P. , Liu X. F. , 2002. Structural types and its relation with oil and gas of Bayanhot Basin. Journal of Southwest Petroleum Institute, 24(3): 24—27. (in Chinese)
    [14] 马静辉, 何登发, 2019. 贺兰山构造带及邻区中—新生代构造事件: 来自不整合面和裂变径迹的约束. 岩石学报, 35(4): 1121—1142 doi: 10.18654/1000-0569/2019.04.10

    Ma J. H. , He D. F. , 2019. Meso-Cenozoic tectonic events in the Helanshan tectonic belt and its adjacent areas: constraints from unconformity and fission track data. Acta Petrologica Sinica, 35(4): 1121—1142. (in Chinese) doi: 10.18654/1000-0569/2019.04.10
    [15] 盛书中, 万永革, 黄骥超等, 2015. 应用综合震源机制解法推断鄂尔多斯块体周缘现今地壳应力场的初步结果. 地球物理学报, 58(2): 436—452 doi: 10.6038/cjg20150208

    Sheng S. Z. , Wan Y. G. , Huang J. C. , et al. , 2015. Present tectonic stress field in the Circum-Ordos region deduced from composite focal mechanism method. Chinese Journal of Geophysics, 58(2): 436—452. (in Chinese) doi: 10.6038/cjg20150208
    [16] 王晓山, 吕坚, 谢祖军等, 2015. 南北地震带震源机制解与构造应力场特征. 地球物理学报, 58(11): 4149—4162

    Wang X. S. , Lü J. , Xie Z. J. , et al. , 2015. Focal mechanisms and tectonic stress field in the North-South Seismic Belt of China. Chinese Journal of Geophysics, 58(11): 4149—4162. (in Chinese)
    [17] 王银, 杜鹏, 雷启云, 2007. 银川市活断层探测进展概述. 震灾防御技术, 2(2): 166—175 doi: 10.3969/j.issn.1673-5722.2007.02.007

    Wang Y. , Du P. , Lei Q. Y. , 2007. Summary on recent progress of active fault exploration project in Yinchuan City. Technology for Earthquake Disaster Prevention, 2(2): 166—175. (in Chinese) doi: 10.3969/j.issn.1673-5722.2007.02.007
    [18] 杨勇, 杨文明, 2018. 基于电性特征的银川盆地第四系分布特征研究. 宁夏工程技术, 17(1): 15—19 doi: 10.3969/j.issn.1671-7244.2018.01.004

    Yang Y. , Yang W. M. , 2018. Quaternary distribution characteristics of Yinchuan basin based on electrical characteristics. Ningxia Engineering Technology, 17(1): 15—19. (in Chinese) doi: 10.3969/j.issn.1671-7244.2018.01.004
    [19] Bi H. Y. , Zheng W. J. , Lei Q. Y. , et al. , 2020. Surface slip distribution along the West Helanshan Fault, Northern China, and its implications for fault behavior. Journal of Geophysical Research: Solid Earth, 125(7): e2020JB019983.
    [20] Liang S. M. , Gan W. J. , Shen C. Z. , et al. , 2013. Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements. Journal of Geophysical Research: Solid Earth, 118(10): 5722—5732. doi: 10.1002/2013JB010503
    [21] Middleton T. A. , Walker R. T. , Rood D. H. , et al. , 2016. The tectonics of the western Ordos Plateau, Ningxia, China: slip rates on the Luoshan and East Helanshan Faults. Tectonics, 35(11): 2754—2777. doi: 10.1002/2016TC004230
    [22] Tapponnier P. , Xu Z. Q. , Roger F. , et al. , 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294(5547): 1671—1677. doi: 10.1126/science.105978
    [23] Yang X. Y. , Dong Y. P. , 2018. Mesozoic and Cenozoic multiple deformations in the Helanshan tectonic belt, northern China. Gondwana Research, 60: 34—53. doi: 10.1016/j.gr.2018.03.020
    [24] Zhang J. , Cunningham D. , Yun L. , et al. , 2021. Kinematic variability of late Cenozoic fault systems and contrasting mountain building processes in the Alxa block, western China. Journal of Asian Earth Sciences, 205: 104597. doi: 10.1016/j.jseaes.2020.104597
  • 加载中
图(5)
计量
  • 文章访问数:  158
  • HTML全文浏览量:  67
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-30
  • 网络出版日期:  2022-05-31
  • 刊出日期:  2022-03-31

目录

    /

    返回文章
    返回