• ISSN 1673-5722
  • CN 11-5429/P

PET FRP与混凝土界面黏结行为试验研究

秦思颖 朱铮 白玉磊

秦思颖,朱铮,白玉磊,2021. PET FRP与混凝土界面黏结行为试验研究. 震灾防御技术,16(4):717−727. doi:10.11899/zzfy20210413. doi: 10.11899/zzfy20210413
引用本文: 秦思颖,朱铮,白玉磊,2021. PET FRP与混凝土界面黏结行为试验研究. 震灾防御技术,16(4):717−727. doi:10.11899/zzfy20210413. doi: 10.11899/zzfy20210413
Qin Siying, Zhu Zheng, Bai Yulei. Experimental Study on the Bonding Behavior of PET FRP and Concrete Interface[J]. Technology for Earthquake Disaster Prevention, 2021, 16(4): 717-727. doi: 10.11899/zzfy20210413
Citation: Qin Siying, Zhu Zheng, Bai Yulei. Experimental Study on the Bonding Behavior of PET FRP and Concrete Interface[J]. Technology for Earthquake Disaster Prevention, 2021, 16(4): 717-727. doi: 10.11899/zzfy20210413

PET FRP与混凝土界面黏结行为试验研究

doi: 10.11899/zzfy20210413
基金项目: 国家自然科学基金(51778019)
详细信息
    作者简介:

    秦思颖,男,生于1995年。硕士。主要从事桥梁抗震与加固研究。E-mail:qsiying@foxmail.com

    通讯作者:

    白玉磊,男,生于1985年。副教授,博士生导师。主要从事桥梁抗震与加固研究。E-mail:baiyl_bjut@163.com

Experimental Study on the Bonding Behavior of PET FRP and Concrete Interface

  • 摘要: 通过双面剪切试验对24个试件进行高延性纤维增强复合材料(PET FRP)与混凝土界面黏结性能研究,研究参数包括FRP种类、FRP黏结厚度、黏结长度和黏结宽度;分析各参数对PET FRP与混凝土黏结性能的影响,基于试验结果评估现有黏结滑移关系模型,并进行模型修正。研究结果表明,在有效黏结长度内,随着黏结长度的增加,PET FRP与混凝土界面黏结强度增大;当超过有效黏结长度后,增加PET FRP黏结长度不能明显增加界面黏结强度,但可提高试件破坏的延性;增加PET FRP黏结宽度可提高界面黏结强度,但会受PET FRP黏结宽度和混凝土宽度比值的影响;当界面刚度接近时,碳纤维增强复合材料(CFRP)与混凝土界面黏结强度远小于PET FRP与混凝土界面黏结强度。
  • 图  1  双剪试验装置

    Figure  1.  The plan of double shear test

    图  2  双剪试验应变片粘贴示意

    Figure  2.  The schematic diagram of strain gauge pasting

    图  3  双剪试验加载示意

    Figure  3.  Loading of double shear test

    图  4  试件破坏示意

    Figure  4.  Failure mode of specimen

    图  5  界面脱粘破坏机理

    Figure  5.  Interface debonding failure mechanism

    图  6  黏结长度对界面黏结强度的影响

    Figure  6.  The influence of bond length on the bond strength of the interface

    图  7  黏结层数、FRP种类、界面刚度对界面黏结强度的影响

    Figure  7.  The influence of the number of layers, FRP types, and interface stiffness on the bond strength of the interface

    图  8  修正公式对界面黏结强度的预测

    Figure  8.  Comparison of measured value and modified formula of interface bond strength

    图  9  代表性工况下FRP表面应变分布

    Figure  9.  FRP strain distribution under various working conditions

    图  10  不同模型下PET FRP与混凝土界面黏结滑移关系曲线

    Figure  10.  Bond-slip curve under various working conditions

    图  11  修正后3种模型的PET FRP与混凝土界面黏结滑移关系的拟合曲线

    Figure  11.  Fitting curves of the bond-slip relationship between PET FRP and concrete interface of the three modified models

    表  1  试验参数与结果

    Table  1.   Test plan and results

    编号FRP种类FRP层数黏结长度/
    mm
    黏结宽度/
    mm
    试验测得的界面
    极限荷载Pt/kN
    Chen等(2001)对黏结强度的
    预测值Pu/kN
    Pt/Pu
    P-1-40-50-IPET1405014.5910.531.39
    P-1-40-50-IIPET1405014.2410.531.35
    P-1-50-50-IPET1505016.4611.451.44
    P-1-50-50-IIPET1505016.9911.451.48
    P-1-60-50-IPET1605019.4611.581.68
    P-1-60-50-IIPET1605018.6111.581.61
    P-1-70-50-IPET1705020.111.581.74
    P-1-70-50-IIPET1705019.2111.581.66
    P-1-80-50-IPET1805017.6111.581.52
    P-1-80-50-IIPET1805017.8411.581.54
    P-1-90-50-IPET1905024.4911.582.11
    P-1-90-50-IIPET1905018.2111.581.57
    P-1-100-50-IPET11005018.1611.581.57
    P-1-100-50-IIPET11005019.4311.581.68
    P-1-190-50-IPET11905023.9811.582.07
    P-1-190-50-IIPET11905023.9111.582.06
    P-1-190-30-IPET11903014.047.941.77
    P-1-190-30-IIPET11903012.747.941.60
    P-1-190-70-IPET11907024.9414.181.76
    P-1-190-70-IIPET11907034.7014.182.45
    P-3-190-50-IPET31905039.8420.061.99
    P-3-190-50-IIPET31905036.2720.061.81
    C-1-190-50-ICFRP11905022.7220.681.10
    C-1-190-50-IICFRP11905018.0620.680.87
    注:I和II代表2个完全相同的构件
    下载: 导出CSV

    表  2  FRP力学参数

    Table  2.   Mechanical parameters of FRP

    FRP种类名义黏结厚度/mm抗拉强度/MPa第1段弹性模量/GPa第2段弹性模量/GPa伸长率/%
    CFRP0.1673 972245.51.77
    PET FRP(PET-600)0.84174017.98.38.30
    下载: 导出CSV

    表  3  界面黏结强度实测值与修正值对比

    Table  3.   Comparison of measured value and modified formula of interface bond strength

    编号FRP种类试验测得的界面极限荷载Pt/kN界面黏结强度修正值Pm/kNPt/Pm
    P-1-40-50-IPET14.5918.110.81
    P-1-40-50-IIPET14.2418.110.79
    P-1-50-50-IPET16.4619.690.84
    P-1-50-50-IIPET16.9919.690.86
    P-1-60-50-IPET19.4619.920.98
    P-1-60-50-IIPET18.6119.920.93
    P-1-70-50-IPET20.119.921.01
    P-1-70-50-IIPET19.2119.920.96
    P-1-80-50-IPET17.6119.920.88
    P-1-80-50-IIPET17.8419.920.90
    P-1-90-50-IPET24.4919.921.23
    P-1-90-50-IIPET18.2119.920.91
    P-1-100-50-IPET18.1619.920.91
    P-1-100-50-IIPET19.4319.920.98
    P-1-190-50-IPET23.9819.921.20
    P-1-190-50-IIPET23.9119.921.20
    P-1-190-30-IPET14.0413.661.03
    P-1-190-30-IIPET12.7413.660.93
    P-1-190-70-IPET24.9424.391.02
    P-1-190-70-IIPET34.724.391.42
    P-3-190-50-IPET39.8434.51.15
    P-3-190-50-IIPET36.2734.51.05
    下载: 导出CSV

    表  4  各模型对峰值剪应力与对应滑移量试验值和预测值比值的对比

    Table  4.   Comparison of various models and experimental results

    编号Popovics模型τtpMonti双线性模型τtp陆新征简化模型τtpPopovics模型S0,t/S0,pMonti双线性模型S0,t/S0,p陆新征简化模型S0,t/S0,p
    P-1-40-500.250.380.470.801.731.11
    P-1-50-500.350.540.661.693.672.34
    P-1-60-500.530.821.011.252.721.73
    P-1-70-500.630.961.181.483.202.04
    P-1-80-500.801.221.511.383.001.91
    P-1-90-500.530.821.011.693.672.34
    P-1-100-500.460.710.882.154.672.98
    P-1-190-500.590.911.121.783.872.47
    P-3-190-500.821.261.553.086.674.26
    P-1-190-300.620.951.041.232.671.54
    P-1-190-700.590.901.251.383.002.14
    平均值0.560.861.061.633.532.26
    下载: 导出CSV

    表  5  3种模型黏结滑移关系曲线与试验结果拟合决定系数

    Table  5.   Fitting results of each bond-slip model and test data

    编号Popovics模型Monti双线性模型陆新征简化模型
    P-1-200-300.850.930.76
    P-1-200-700.970.900.94
    P-1-200-500.870.970.91
    P-1-40-500.990.930.96
    P-1-60-500.960.990.91
    P-1-70-500.980.950.93
    P-1-80-500.980.950.94
    P-1-90-500.960.990.93
    P-1-100-500.950.970.80
    平均值0.940.950.90
    下载: 导出CSV

    表  6  试验结果与3种模型拟合的峰值剪应力和对应的滑移量

    Table  6.   Various situations of τmax and S0

    编号试验结果Popovics模型Monti双线性模型陆新征简化模型
    峰值剪应力滑移量峰值剪应力滑移量峰值剪应力滑移量峰值剪应力滑移量
    P-1-40-501.580.051.510.051.590.051.570.06
    P-1-50-502.240.112.080.072.100.062.200.09
    P-1-60-503.420.083.400.093.390.073.330.10
    P-1-70-504.010.104.000.104.340.093.990.11
    P-1-80-505.120.095.110.095.110.095.100.10
    P-1-90-503.420.113.390.113.390.093.300.12
    P-1-100-502.970.142.960.152.950.142.270.16
    P-1-190-503.810.123.790.123.780.113.510.17
    P-1-190-303.960.083.960.083.950.083.900.08
    P-1-190-703.780.093.780.093.770.083.800.09
    P-3-190-505.250.245.240.245.250.235.250.37
    下载: 导出CSV

    表  7  修正公式计算结果与试验值的对比

    Table  7.   Comparison of modified model and experimental value

    编号修正公式计算结果τt/τp修正公式计算结果S0,t/S0,p试验值τt公式计算结果τp试验值S0,t公式计算结果S0,p
    P-1-40-500.450.521.583.540.050.10
    P-1-50-500.631.102.243.540.110.10
    P-1-60-500.970.823.423.540.080.10
    P-1-70-501.130.964.013.540.100.10
    P-1-80-501.450.905.123.540.090.10
    P-1-90-500.971.103.423.540.110.10
    P-1-100-500.841.402.973.540.140.10
    P-1-190-501.071.163.813.540.120.10
    P-1-190-301.000.713.963.970.080.11
    P-1-190-701.201.013.783.160.090.09
    平均值0.970.97
    下载: 导出CSV
  • [1] 谷倩, 张祥顺, 彭少民, 2003. 新材料FRP的研究与应用综述. 华中科技大学学报(城市科学版), 20(1): 88—92

    Gu Q. , Zhang X. S. , Peng S. M. , 2003. General introduction of the study and application of new FRP materials. Journal of Huazhong University of Science and Technology (Urban Science Edition), 20(1): 88—92. (in Chinese)
    [2] 陆新征, 2005. FRP-混凝土界面行为研究. 北京: 清华大学.

    Lu X. Z., 2005. Studies on FRP-concrete interface. Beijing: Tsinghua University. (in Chinese)
    [3] ASTM International, 2014. ASTM D3039/D3039M-2014 Standard test method for tensile properties of polymer matrix composite materials. West Conshohocken: ASTM.
    [4] Bai Y. L. , Dai J. G. , Mohammadi M. , et al. , 2019. Stiffness-based design-oriented compressive stress-strain model for large-rupture-strain (LRS) FRP-confined concrete. Composite Structures, 223: 110953. doi: 10.1016/j.compstruct.2019.110953
    [5] Chen J. F. , Teng J. G. , 2001. Anchorage strength models for FRP and steel plates bonded to concrete. Journal of Structural Engineering, 127(7): 784—791. doi: 10.1061/(ASCE)0733-9445(2001)127:7(784)
    [6] Dai J. G. , Bai Y. L. , Teng J. G. , 2011. Behavior and modeling of concrete confined with FRP composites of large deformability. Journal of Composites for Construction, 15(6): 963—973. doi: 10.1061/(ASCE)CC.1943-5614.0000230
    [7] Huo J. S. , Liu J. Y. , Lu Y. , et al. , 2016. Experimental study on dynamic behavior of GFRP-to-concrete interface. Engineering Structures, 118: 371—382. doi: 10.1016/j.engstruct.2016.03.062
    [8] Idris Y. , Ozbakkaloglu T. , 2016. Behavior of square fiber reinforced polymer–high-strength concrete–steel double-skin tubular columns under combined axial compression and reversed-cyclic lateral loading. Engineering Structures, 118: 307—319. doi: 10.1016/j.engstruct.2016.03.059
    [9] Lin J. P. , Wu Y. F. , 2016. Numerical analysis of interfacial bond behavior of externally bonded FRP-to-concrete joints. Journal of Composites for Construction, 20(5): 04016028. doi: 10.1061/(ASCE)CC.1943-5614.0000678
    [10] Liu X. F. , Li Y. , 2019. Static bearing capacity of partially corrosion-damaged reinforced concrete structures strengthened with PET FRP composites. Construction and Building Materials, 211: 33—43. doi: 10.1016/j.conbuildmat.2019.03.218
    [11] Lu X. Z. , Teng J. G. , Ye L. P. , et al. , 2005. Bond–slip models for FRP sheets/plates bonded to concrete. Engineering Structures, 27(6): 920—937. doi: 10.1016/j.engstruct.2005.01.014
    [12] Monti G. , Renzelli M. , Luciani P. , 2003. FRP adhesion in uncracked and cracked concrete zones. In: Proceedings of the 6th International Symposium on FRP Reinforcement for Concrete Structures. Singapure: World Scientific Publishing, 183—192.
    [13] Nakaba K. , Kanakubo T. , Furuta T. , et al. , 2001. Bond Behavior between Fiber-Reinforced Polymer Laminates and Concrete. ACI Structural Journal, 98(3): 359—367.
    [14] Ozbakkaloglu T. , Saatcioglu M. , 2017. Displacement-based model to predict lateral drift capacities of concrete-filled FRP tube columns. Engineering Structures, 147: 345—355. doi: 10.1016/j.engstruct.2017.05.045
    [15] Tao Y. , Chen J. F. , 2015. Concrete damage plasticity model for modeling FRP-to-concrete bond behavior. Journal of Composites for Construction, 19(1): 04014026. doi: 10.1061/(ASCE)CC.1943-5614.0000482
  • 加载中
图(11) / 表(7)
计量
  • 文章访问数:  125
  • HTML全文浏览量:  67
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-25
  • 刊出日期:  2021-12-31

目录

    /

    返回文章
    返回