• ISSN 1673-5722
  • CN 11-5429/P

超强地震作用下深厚覆盖层场地重力坝抗震安全研究

王伟 梁辉 范建朋 郭胜山

王伟,梁辉,范建朋,郭胜山,2021. 超强地震作用下深厚覆盖层场地重力坝抗震安全研究. 震灾防御技术,16(4):702−709. doi:10.11899/zzfy20210411. doi: 10.11899/zzfy20210411
引用本文: 王伟,梁辉,范建朋,郭胜山,2021. 超强地震作用下深厚覆盖层场地重力坝抗震安全研究. 震灾防御技术,16(4):702−709. doi:10.11899/zzfy20210411. doi: 10.11899/zzfy20210411
Wang Wei, Liang Hui, Fan Jianpeng, Guo Shengshan. Seismic Safety Evaluation of a Gravity Dam in Deep Overburden Site Under Super Strong Earthquakes[J]. Technology for Earthquake Disaster Prevention, 2021, 16(4): 702-709. doi: 10.11899/zzfy20210411
Citation: Wang Wei, Liang Hui, Fan Jianpeng, Guo Shengshan. Seismic Safety Evaluation of a Gravity Dam in Deep Overburden Site Under Super Strong Earthquakes[J]. Technology for Earthquake Disaster Prevention, 2021, 16(4): 702-709. doi: 10.11899/zzfy20210411

超强地震作用下深厚覆盖层场地重力坝抗震安全研究

doi: 10.11899/zzfy20210411
详细信息
    作者简介:

    王伟,男,生于1974年。正高级工程师。主要从事水工设计相关工作。E-mail:943810253@qq.com

    通讯作者:

    梁辉,男,生于1991年。博士、工程师。主要从事水工结构抗震计算等研究。E-mail:1054305889@qq.com

Seismic Safety Evaluation of a Gravity Dam in Deep Overburden Site Under Super Strong Earthquakes

  • 摘要: 本文通过成层状地基地震动输入计算方法得到覆盖层边界自由场运动,采用粘弹性边界,考虑地基辐射阻尼效应及坝体和地基的接触非线性,针对强震区深厚覆盖层场地重力坝开展线性和非线性动力时程分析研究,结合需求能力比DCR评估其抗震性能。由线弹性动力时程分析可知,在运行基准地震OBE作用下,重力坝坝体应力均在允许范围内,其抗滑稳定安全系数不能满足要求;由非线性动力分析可知,在OBE和最大设计地震MDE作用下,重力坝发生较大滑动位移。通过在重力坝坝体下游坝后回填土加强重力坝抗震稳定性,结果表明,下游坝后回填土可有效减小坝体滑动位移,加强其抗震稳定性。本文针对深厚覆盖层场地重力坝开展的抗震安全研究为抗震设计提供了科学依据,为强震区深厚覆盖层场地重力坝的抗震分析提供参考。
  • 图  1  一维波动系统

    Figure  1.  One dimensional wave system

    图  2  接触压力-过盈曲线

    Figure  2.  Contact pressure-overclosure

    图  3  几何模型

    Figure  3.  Geometric model

    图  4  重力坝坝体-地基有限元计算模型

    Figure  4.  Finite element model of a gravity dam-foundation

    图  5  地震动输入模型

    Figure  5.  Seismic input model

    图  6  地震加速度时程

    Figure  6.  Earthquake acceleration time history

    图  7  最大主应力云图

    Figure  7.  The maximum principal stress nephogram

    图  8  最小主应力云图

    Figure  8.  The minimum principal stress nephogram

    图  9  坝顶位移时程计算结果

    Figure  9.  Displacement time history of dam crest

    图  10  滑动安全系数时程计算结果

    Figure  10.  Sliding safety factor time history

    图  11  OBE滑移量时程计算结果

    Figure  11.  Slippage time history under OBE

    图  12  MDE滑移量时程计算结果

    Figure  12.  Slippage time history under MDE

    图  13  坝后回填土坝体-地基几何模型

    Figure  13.  Geometric model of the dam with backfill

    图  14  坝后回填土坝体-地基有限元模型

    Figure  14.  Finite element model of the dam with backfill

    图  15  OBE滑移量时程计算结果

    Figure  15.  Slippage time history under OBE

    图  16  MDE滑移量时程计算结果

    Figure  16.  Slippage time history under MDE

    表  1  混凝土及地基材料参数

    Table  1.   Material parameters of concrete and foundation

    材料容重γ/kN·m−3剪切
    模量G/MPa
    泊松比$ \mu $弹性模量E/MPa摩擦角φ容许承载力/kPa抗压/抗拉强度/MPa
    砼C2024.0120000.167280001250020/2.40
    毛石砼
    C12
    24.095000.16722000750012/1.71
    覆盖层19.00.2002532.5400
    岩石26.518000.2754500
    下载: 导出CSV

    表  2  各类接触面参数

    Table  2.   Parameters of contact surfaces

    接触面粘聚力c/kPa摩擦角φ
    砼-砼045.0
    砼-毛石砼040.0
    砼-覆盖层028.8
    毛石砼-覆盖层028.8
    下载: 导出CSV
  • [1] 杜修力, 袁雪纯, 黄景琦, 等, 2017. 典型土层场地随机地震反应规律分析. 震灾防御技术, 12(3): 574—588 doi: 10.11899/zzfy20170314

    Du X. L. , Yuan X. C. , Huang J. Q. , et al. , 2017. Analysis of stochastic seismic response in typical soil sites. Technology for Earthquake Disaster Prevention, 12(3): 574—588. (in Chinese) doi: 10.11899/zzfy20170314
    [2] 刘晶波, 吕彦东, 1998. 结构-地基动力相互作用问题分析的一种直接方法. 土木工程学报, 31(3): 55—64

    Liu J. B. , Lv Y. D. , 1998. A direct method for analysis of dynamic soil-structure interaction. China Civil Engineering Journal, 31(3): 55—64. (in Chinese)
    [3] 潘坚文, 张楚汉, 徐艳杰, 2010. 强震输入方式与地基模型对重力坝反应的影响. 岩土工程学报, 32(1): 82—88

    Pan J. W. , Zhang C. H. , Xu Y. J. , 2010. Influence of seismic input mechanism and foundation models on response of gravity dams. Chinese Journal of Geotechnical Engineering, 32(1): 82—88. (in Chinese)
    [4] 殷琳, 楼梦麟, 康帅, 2019. 水平分层土层系统等效阻尼比的简化计算方法. 震灾防御技术, 14(1): 10—23 doi: 10.11899/zzfy20190102

    Yin L. , Lou M. L. , Kang S. , 2019. Simplified method for determining equivalent damping ratio of horizontal multi-layered soil stratum. Technology for Earthquake Disaster Prevention, 14(1): 10—23. (in Chinese) doi: 10.11899/zzfy20190102
    [5] 郑晓东, 刘云贺, 马静, 2016. 考虑强震持续时间的混凝土重力坝损伤累积研究. 水利水电技术, 47(4): 18—23

    Zheng X. D. , Liu Y. H. , Ma J. , 2016. Study on accumulated damage of concrete gravity dam under consideration of strong-motion duration. Water Resources and Hydropower Engineering, 47(4): 18—23. (in Chinese)
    [6] ABAQUS. 2010. ABAQUS 6.10: Analysis User’s Manual. Providence: ABAQUS, Inc.
    [7] Alembagheri M. , 2016. Earthquake damage estimation of concrete gravity dams using linear analysis and empirical failure criteria[J]. Soil Dynamics and Earthquake Engineering, 90: 327—339. doi: 10.1016/j.soildyn.2016.09.005
    [8] Bhattacharjee S. S. , Léger P. , 1993. Seismic cracking and energy dissipation in concrete gravity dams. Earthquake Engineering & Structural Dynamics, 22(11): 991—1007.
    [9] Cervera M. , Oliver J. , Faria R. , 1995. Seismic evaluation of concrete dams via continuum damage models. Earthquake Engineering & Structural Dynamics, 24(9): 1225—1245.
    [10] Chopra A. K. , Wang J. T. , 2010. Earthquake response of arch dams to spatially varying ground motion. Earthquake Engineering & Structural Dynamics, 39(8): 887—906.
    [11] Chopra A. K. , 2012. Earthquake analysis of arch dams: factors to be considered. Journal of Structural Engineering, 138(2): 205—214. doi: 10.1061/(ASCE)ST.1943-541X.0000431
    [12] Deeks A. J. , Randolph M. F. , 1994. Axisymmetric time-domain transmitting boundaries. Journal of Engineering Mechanics, 120(1): 25—42. doi: 10.1061/(ASCE)0733-9399(1994)120:1(25)
    [13] El-Aidi B. , Hall J. F. , 1989. Non-linear earthquake response of concrete gravity dams part 1: modelling. Earthquake Engineering & Structural Dynamics, 18(6): 837—851.
    [14] Fenves G. , Chopra A. K. , 1985. Effects of reservoir bottom absorption and dam-water-foundation rock interaction on frequency response functions for concrete gravity dams. Earthquake Engineering & Structural Dynamics, 13(1): 13—31.
    [15] Fenves G. L. , Mojtahedi S. , Reimer R. B. , 1992. Effect of contraction joints on earthquake response of an arch dam. Journal of Structural Engineering, 118(4): 1039—1055. doi: 10.1061/(ASCE)0733-9445(1992)118:4(1039)
    [16] Hall J. F. , Chopra A. K. , 1982. Hydrodynamic effects in the dynamic response of concrete gravity dams. Earthquake Engineering & Structural Dynamics, 10(2): 333—345.
    [17] Hariri-Ardebili M. A. , Mirzabozorg H. , Ghasemi A. , 2013. Strain-based seismic failure evaluation of coupled dam-reservoir-foundation system. Coupled Systems Mechanics, 2(1): 85—110. doi: 10.12989/csm.2013.2.1.085
    [18] Idriss I. M. , Sun J. I. , 1992. User's manual for SHAKE91-A computer program for conducting equivalent linear seismic response analysis of horizontally layered soil deposits. Davis: University of California.
    [19] Løkke A. , Chopra A. K. , 2018. Direct finite element method for nonlinear earthquake analysis of 3-dimensional semi-unbounded dam-water-foundation rock systems. Earthquake Engineering & Structural Dynamics, 47(5): 1309—1328.
    [20] Pan J. W. , Zhang C. H. , Xu Y. J. , et al. , 2011. A comparative study of the different procedures for seismic cracking analysis of concrete dams. Soil Dynamics and Earthquake Engineering, 31(11): 1594—1606. doi: 10.1016/j.soildyn.2011.06.011
    [21] Tan H. C. , Chopra A. K. , 1996. Dam-foundation rock interaction effects in earthquake response of arch dams. Journal of Structural Engineering, 122(5): 528—538. doi: 10.1061/(ASCE)0733-9445(1996)122:5(528)
    [22] US Army Corps of Engineers. 1995. EM 1110-2-2200 Gravity dam design. Washington: US Army Corps of Engineers.
    [23] US Army Corps of Engineers. 2003. EM 1110-2-6051 Time-history dynamic analysis of concrete hydraulic structures. Washington: US Army Corps of Engineers.
    [24] US Army Corps of Engineers. 2005. EM 1110-2-2100 Stability analysis of concrete structures. Washington: US Army Corps of Engineers.
    [25] US Army Corps of Engineers. 2007. EM 1110-2-6053 Earthquake design and evaluation of concrete hydraulic structures. Washington: US Army Corps of Engineers.
    [26] Zhang C. H. , Pan J. W. , Wang J. T. , 2009. Influence of seismic input mechanisms and radiation damping on arch dam response. Soil Dynamics and Earthquake Engineering, 29(9): 1282—1293. doi: 10.1016/j.soildyn.2009.03.003
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  163
  • HTML全文浏览量:  64
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-22
  • 刊出日期:  2021-12-31

目录

    /

    返回文章
    返回