• ISSN 1673-5722
  • CN 11-5429/P

高延性FRP加固大尺寸混凝土柱轴压力学性能研究

白玉磊 张思嫚 朱铮 李文枫

白玉磊,张思嫚,朱铮,李文枫,2021. 高延性FRP加固大尺寸混凝土柱轴压力学性能研究. 震灾防御技术,16(4):691−701. doi:10.11899/zzfy20210410. doi: 10.11899/zzfy20210410
引用本文: 白玉磊,张思嫚,朱铮,李文枫,2021. 高延性FRP加固大尺寸混凝土柱轴压力学性能研究. 震灾防御技术,16(4):691−701. doi:10.11899/zzfy20210410. doi: 10.11899/zzfy20210410
Bai Yulei, Zhang Siman, Zhu Zheng, Li Wenfeng. Behavior of High Ductility FRP-confined Large-size Concrete Columns Under Axial Compression[J]. Technology for Earthquake Disaster Prevention, 2021, 16(4): 691-701. doi: 10.11899/zzfy20210410
Citation: Bai Yulei, Zhang Siman, Zhu Zheng, Li Wenfeng. Behavior of High Ductility FRP-confined Large-size Concrete Columns Under Axial Compression[J]. Technology for Earthquake Disaster Prevention, 2021, 16(4): 691-701. doi: 10.11899/zzfy20210410

高延性FRP加固大尺寸混凝土柱轴压力学性能研究

doi: 10.11899/zzfy20210410
基金项目: 国家自然科学基金(51778019)
详细信息
    作者简介:

    白玉磊,男,生于1985年。副教授,博士生导师。主要从事桥梁抗震与加固研究工作。E-mail:baiyl_bjut@163.com

    通讯作者:

    李文枫,男,生于1984年。高级工程师。主要从事能源领域结构的设计与研究工作。E-mail:64978797@qq.com

Behavior of High Ductility FRP-confined Large-size Concrete Columns Under Axial Compression

  • 摘要: 现有纤维增强复合材料(FRP)约束混凝土短柱的研究多基于小尺寸试件,对大尺寸试件的研究较少。聚对苯二甲酸乙二醇酯纤维增强复合材料(PET FRP)和聚萘二甲酸乙二醇酯纤维增强复合材料(PEN FRP)是由回收废弃塑料制成的环保型高延性FRP。高延性FRP具有超过5%的断裂应变,超过传统FRP断裂应变(1.5~3%)。本研究对8个PET FRP约束混凝土圆柱(直径300、400 mm试件各4个)与8个PEN FRP约束混凝土方柱(边长300、400 mm试件各4个)进行轴压力学性能试验,研究构件截面形状、FRP层数等参数对试件轴压力学性能的影响。试验结果表明:高延性FRP约束混凝土柱应力-应变曲线由3个不同的部分组成;部分高延性FRP约束混凝土柱应力-应变曲线第2段出现了下降段,与约束刚度较小有关;相同尺寸的试件,随着高延性FRP层数(厚度)的增加,试件承载力提高,延性更好;对于PEN FRP约束混凝土方柱,在同一轴向变形、高度区域处,环向面应变较环向角应变大,且环向面应变的增加值大于角区域;采用现有高延性FRP约束混凝土柱模型,对约束圆形和方形混凝土柱轴压力学性能提供相对合理的预测。
  • 图  1  试件截面尺寸(单位:mm)

    Figure  1.  Cross-sections of test specimens (Unit: mm)

    图  2  PET FRP拉伸试验

    Figure  2.  Tensile test of PET FRP

    图  3  PEN FRP拉伸试验

    Figure  3.  Tensile test of PEN FRP

    图  4  PET FRP拉伸应力-应变曲线

    Figure  4.  Tensile stress-strain curves of PET FRP

    图  5  PEN FRP拉伸应力-应变曲线

    Figure  5.  Tensile stress-strain curves of PEN FRP

    图  6  测量设备布置

    Figure  6.  Test setup and instrumentation details

    图  7  应变片布置示意

    Figure  7.  Distribution of strain gauges

    图  8  试验结束后的试件

    Figure  8.  Specimens after test

    图  9  试件轴向应力-应变曲线

    Figure  9.  Axial stress- strain curves

    图  10  方柱环向应变分布

    Figure  10.  Distribution of hoop strains on PEN FRP

    图  11  试件轴向应变和环向面应变、角应变之间的关系

    Figure  11.  Axial strain-lateral strain curves

    图  12  模型预测结果与试验结果的对比

    Figure  12.  Comparison of model and test curves

    表  1  试件编号及参数

    Table  1.   Details of specimens

    试件编号直径或边长/mm高度/mm角半径/mm材料类型FRP层数/层
    C-PET-300-2-a,b300600PET FRP2
    C-PET-300-3-a,b300600PET FRP3
    C-PET-400-2-a,b400800PET FRP2
    C-PET-400-4-a,b400800PET FRP4

    S-PEN-300-2-a,b

    300

    600

    60

    PEN FRP

    2

    S-PEN-300-3-a,b

    300

    600

    60

    PEN FRP

    3

    S-PEN-400-2-a,b

    400

    800

    80

    PEN FRP

    2

    S-PEN-400-4-a,b

    400

    800

    80

    PEN FRP

    4
    下载: 导出CSV

    表  2  圆柱主要试验结果

    Table  2.   Key results of circular column tests

    试件编号fcu ′ /MPaεcu/%εh,rup/%最大环向应变对应的应变片编号
    C-PET-300-2-a 37.2 1.79 3.38 SG1
    C-PET-300-2-b 39.2 2.28 3.86 SG5
    C-PET-300-3-a
    49.6

    3.51

    4.16

    SG1
    C-PET-300-3-b 50.4 3.41 4.24 SG4
    C-PET-400-2-a 35.9 1.67 3.38 SG1
    C-PET-400-2-b 36.2 1.75 3.23 SG2
    C-PET-400-4-a 45.2 2.19 3.28 SG5
    C-PET-400-4-b 45.0 2.24 3.36 SG1
    下载: 导出CSV

    表  3  方柱主要试验结果

    Table  3.   Key results of square column tests

    试件编号fcu ′ /MPaεcu/%εh,c/%εh,s/%最大环向应变对应的应变片编号
    S-PEN-300-2-a 37.6 2.34 1.46 2.19 SG9
    S-PEN-300-2-b 38.4 2.28 1.75 2.34 SG1
    S-PEN-300-3-a 54.8 3.14 1.77 2.84 SG1
    S-PEN-300-3-b 53.3 3.42 1.37 2.73 SG1
    S-PEN-400-2-a 35.5 1.66 1.60 2.01 SG9
    S-PEN-400-2-b 35.5 1.79 2.40 2.38 SG5
    S-PEN-400-4-a 47.9 2.64 1.50 2.43 SG9
    S-PEN-400-4-b 49.0 2.39 0.90 2.18 SG1
    下载: 导出CSV
  • [1] 蔡静, 2015. 大尺寸CFRP约束混凝土方柱的轴心抗压试验研究. 湖南大学硕士论文.

    Cai J, 2015. Experimental research on large-scale square concrete columns confined with wrapped CFRP under axial compressive. Hunan University. (in Chinese)
    [2] 邓宗才, 顾佳培, 2019. FRP管约束活性粉末混凝土方柱抗震性能研究. 震灾防御技术, 14(4): 769—780 doi: 10.11899/zzfy20190408

    Deng Z. C. , Gu J. P. , 2019. Research on seismic performance of reactive powder concrete square columns confined with FRP tubes. Technology for Earthquake Disaster Prevention, 14(4): 769—780. (in Chinese) doi: 10.11899/zzfy20190408
    [3] 龙跃凌, 戴建国, 2010. 新型大断裂应变FRP约束混凝土圆柱的轴压性能. 混凝土, 07: 44-47

    Long Y L, Dai J G, 2010. Behavior of circular concrete columns confined by new-typed large rupture strain FRP under axial compression. Concrete, 07: 44-47. (in Chinese)
    [4] ASTM, 2002. Standard test method for static modulus of elasticity and poission’s ratio of concrete in compression ASTM C469. American Society for Testing and Materials.
    [5] ASTM, 2008. D3039/D3039M. Standard test method for tensile properties of polymer matrix composite materials, American Society for Testing and Materials.
    [6] Bai Y L, Dai J G, Mohammadi M, Lin G, Mei S J, 2019. Stiffness-based design-oriented compressive stress-strain model for large-rupture-strain (LRS) FRP-confined concrete. Composites Structures, 223: 110953. doi: 10.1016/j.compstruct.2019.110953
    [7] Dai J G, Bai Y L, Teng J G, 2011. Behavior and modeling of concrete confined with FRP composites of large deformability[J]. Journal of Composites for Construction, 15(6): 963-973. doi: 10.1061/(ASCE)CC.1943-5614.0000230
    [8] Han Q, Yuan W Y, Bai Y L, Du X L, 2020. Compressive behavior of large rupture strain (LRS) FRP-confined square concrete columns: experimental study and model evaluation. Materials and Structures, 53: 59. doi: 10.1617/s11527-020-01495-8
    [9] Han Q, Yuan W Y, Ozbakkaloglu T, and Bai Y L, 2020. Compressive behavior for recycled aggregate concrete confined with recycled polyethylene naphthalate composites. Constr. Build. Mater, 261: 120498. doi: 10.1016/j.conbuildmat.2020.120498
    [10] Hollaway L C, Teng J G, 2008. Strengthening and rehabilitation of civil infrastructures using fibre- reinforced polymer (FRP) composites. Cambridge, UK: Woodhead Publishing.
    [11] Ozbakkaloglu T, Lim J C, Vincent T, 2013. FRP-confined concrete in circular sections: Review and assessment of stress-strain models. Engineering Structures, 49: 1068-1088. doi: 10.1016/j.engstruct.2012.06.010
    [12] Pimanmas A, Saleem S, 2019. Evaluation of existing stress-strain models and modeling of PET FRP-confined concrete. J Mater Civ Eng, 31(12): 04019303. doi: 10.1061/(ASCE)MT.1943-5533.0002941
    [13] Popovics S, 1973. A numerical approach to the complete stress-strain curve of concrete. Cement and concrete research, 3(5), 583-599. doi: 10.1016/0008-8846(73)90096-3
    [14] Saleem S, Hussain Q, Pimanmas A, 2016. Compressive Behavior of PET FRP-Confined Circular, Square, and Rectangular Concrete Columns. Journal of Composites for Construction, 21(3): 04016097.
    [15] Teng J G, Chen J F, Smith S T, et al. FRP-strengthened RC structures. John Wiley & Sons, Ltd; 2002.
    [16] Wang L M, Wu Y F, 2008. Effect of corner radius on the performance of CFRP confined square concrete columns: Test. Engineering Structures, 30(2): 493-505. doi: 10.1016/j.engstruct.2007.04.016
    [17] Xiao Y, 2009. Applications of FRP composites in concrete columns. Advance in Structural Enginerring, 7(4), 335-343.
    [18] Zeng J J, Lin G, Teng J G, Li LJ, 2018. Behavior of large-scale FRP-confined rectangular RC columns under axial compression. Engineering Structures, (174): 629-645.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  49
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-26
  • 刊出日期:  2021-12-31

目录

    /

    返回文章
    返回