• ISSN 1673-5722
  • CN 11-5429/P

中空暗缝RC剪力墙板拟静力试验及数值模拟分析

李飞 孙国华 杨文侠

李飞,孙国华,杨文侠,2021. 中空暗缝RC剪力墙板拟静力试验及数值模拟分析. 震灾防御技术,16(4):680−690. doi:10.11899/zzfy20210409. doi: 10.11899/zzfy20210409
引用本文: 李飞,孙国华,杨文侠,2021. 中空暗缝RC剪力墙板拟静力试验及数值模拟分析. 震灾防御技术,16(4):680−690. doi:10.11899/zzfy20210409. doi: 10.11899/zzfy20210409
Li Fei, Sun Guohua, Yang Wenxia. Quasi-static Test and Numerical Simulation of RC Shear Panel with Concealed Hollow Slits[J]. Technology for Earthquake Disaster Prevention, 2021, 16(4): 680-690. doi: 10.11899/zzfy20210409
Citation: Li Fei, Sun Guohua, Yang Wenxia. Quasi-static Test and Numerical Simulation of RC Shear Panel with Concealed Hollow Slits[J]. Technology for Earthquake Disaster Prevention, 2021, 16(4): 680-690. doi: 10.11899/zzfy20210409

中空暗缝RC剪力墙板拟静力试验及数值模拟分析

doi: 10.11899/zzfy20210409
基金项目: 国家自然科学基金(51108292);江苏省高等学校自然科学研究重大项目(17KJA560003);江苏省“六大人才高峰”项目(JZ-035);中国地震局地震工程与工程振动重点实验室重点专项(2020EEEVL0416)
详细信息
    作者简介:

    李飞,男,生于1995年。硕士研究生。主要从事组合结构抗震研究。E-mail:lifei892113628@qq.com

    通讯作者:

    孙国华,男,生于1978年。工学博士,教授。主要从事钢结构及组合结构抗震研究。E-mail:sgh@mail.usts.edu.cn

Quasi-static Test and Numerical Simulation of RC Shear Panel with Concealed Hollow Slits

  • 摘要: 为明晰中空暗缝RC剪力墙抗剪机理和滞回性能,进行1榀1∶3缩尺单层、单跨中空暗缝RC剪力墙板拟静力试验,得到了试件破坏模式、滞回曲线、骨架曲线、刚度退化、强度退化、延性和耗能能力。通过数值模拟分析了混凝土强度、中空暗缝厚度、缝间墙配筋率对剪力墙板水平抗剪承载力的影响。研究结果表明:试件滞回曲线呈捏缩状,耗能能力一般,但具有较好的剪切变形能力;试件最终呈中空暗缝剪碎、缝间墙两端形成弯曲塑性铰的破坏模式;随着混凝土强度的提高和中空暗缝厚度的减小,试件水平抗剪承载力呈增加趋势;缝间墙配筋率对试件水平抗剪承载力及损伤状态的影响较小。
  • 图  1  试件RCIP几何尺寸 (单位:mm)

    Figure  1.  Dimensions of specimen RCIP (Unit: mm)

    图  2  RC剪力墙板配筋 (单位:mm)

    Figure  2.  Steel reinforcing bars of RC shear panel (Unit: mm)

    图  3  加载装置

    Figure  3.  Test setup

    图  4  测点布置

    Figure  4.  Instrumentation arrangements

    图  5  加载制度

    Figure  5.  Loading protocol

    图  6  试件RCIP破坏形态

    Figure  6.  Failure pictures of specimen RCIP

    图  7  试件RCIP破坏模式

    Figure  7.  Failure mode of specimen RCIP

    图  8  滞回曲线

    Figure  8.  Hysteretic curves

    图  9  骨架曲线

    Figure  9.  Skeleton curves

    图  10  抗侧刚度退化曲线

    Figure  10.  Degradation curves of lateral stiffness

    图  11  强度退化曲线

    Figure  11.  Degradation curves of lateral strength

    图  12  试件关键点确定方法

    Figure  12.  Determination method of key points of specimen

    图  13  单圈滞回耗能曲线

    Figure  13.  Single hysteretic energy curve at each loading level

    图  14  等效黏滞阻尼比的计算示意

    Figure  14.  Diagram of equivalent viscous damping ratio

    图  15  等效黏滞阻尼比

    Figure  15.  Equivalent viscous damping ratio

    图  16  试件RCIP有限元模型

    Figure  16.  Finite element model of specimen RCIP

    图  17  试件RCIP骨架曲线的对比

    Figure  17.  Skeleton curve comparison of specimen RCIP

    图  18  试件RCIP损伤状态

    Figure  18.  Damage state of specimen RCIP

    图  19  混凝土强度的影响

    Figure  19.  Effect of concrete strength

    图  20  试件CS-1、CS-2损伤状态

    Figure  20.  Damage states of CS series specimens

    图  21  中空暗缝厚度的影响

    Figure  21.  Effect of the concealed hollow slits thickness

    图  22  试件TCHS-1、TCHS-2损伤状态

    Figure  22.  Damage states of TCHS series specimens

    图  23  配筋率的影响

    Figure  23.  Effect of the reinforcement ratio

    图  24  试件RR-1、RR-2损伤状态

    Figure  24.  Damage states of RR series specimens

    表  1  钢材力学性能

    Table  1.   Material properties of steel and steel bar

    类型厚度或直径/mm屈服强度fy/MPa极限强度fu/MPa伸长率ε/%
    槽钢腹板5.1333.40405.5824.30
    直径4mm钢筋4.0270.52465.2411.31
    直径6.5mm钢筋6.5379.20538.0326.44
    下载: 导出CSV

    表  2  试件RCIP位移及延性系数

    Table  2.   Deformation and ductility of specimen RCIP

    加载方向显著层间屈服位移角θy/%峰值位移角θm/%极限位移角θu/%延性系数μ
    正向0.460.871.713.72
    负向0.381.031.584.16
    均值0.420.951.653.94
    下载: 导出CSV
  • [1] 国家质量技术监督局, 中国国家标准化管理委员会, 2018. GB/T 2975—2018 钢及钢产品 力学性能试验取样位置及试样制备. 北京: 中国标准出版社.

    State Administration for Market Regulation, Standardization Administration of the People's Republic of China, 2018. GB/T 2975—2018 Steel and steel products--Location and preparation of samples and test pieces for mechanical testing. Beijing: Standards Press of China. (in Chinese)
    [2] 康胜, 曾勇, 叶列平, 2001. 双功能带缝剪力墙的刚度和承载力研究. 工程力学, 18(2): 27—34 doi: 10.3969/j.issn.1000-4750.2001.02.005

    Kang S. , Zeng Y. , Ye L. P. , 2001. Stiffness and strength analysis of dual functional slitted shear wall. Engineering Mechanics, 18(2): 27—34. (in Chinese) doi: 10.3969/j.issn.1000-4750.2001.02.005
    [3] 廉晓飞, 邹超英, 1996. 带竖缝混凝土剪力墙板在低周反复荷载作用下的工作性能试验研究. 哈尔滨建筑大学学报, 29(1): 31—36

    Lian X. F. , Zou C. Y. , 1996. Test research on the working behavior of RC shear panels with vertical seams under low-cyclic loading. Journal of Harbin University of Architecture and Engineering, 29(1): 31—36. (in Chinese)
    [4] 孙国华, 顾强, 何若全等, 2010. 半刚接钢框架内填暗竖缝钢筋混凝土剪力墙结构滞回性能试验研究. 建筑结构学报, 31(9): 16—26

    Sun G. H. , Gu Q. , He R. Q. , et al. , 2010. Experimental investigation of partially-restrained steel frame with concealed vertical slits RC infill walls. Journal of Building Structures, 31(9): 16—26. (in Chinese)
    [5] 孙国华, 顾强, 张振涛等, 2014. 半刚接钢框架内填不同构造措施钢筋混凝土墙子结构抗震性能试验研究. 建筑结构学报, 35(10): 21—30

    Sun G. H. , Gu Q. , Zhang Z. T. , et al. , 2014. Experimental investigation on seismic behavior of partially-restrained steel frame subassemblages with different type of RC infill walls. Journal of Building Structures, 35(10): 21—30. (in Chinese)
    [6] 武藤清, 1984. 结构物动力设计. 滕家禄等, 译. 北京: 中国建筑工业出版社.
    [7] 赵伟, 童根树, 杨强跃, 2012. 钢框架内填预制带竖缝钢筋混凝土剪力墙抗震性能试验研究. 建筑结构学报, 33(7): 140—146

    Zhao W. , Tong G. S. , Yang Q. Y. , 2012. Experimental study on seismic behavior of steel frame with prefabricated reinforced concrete infill slit shear walls. Journal of Building Structures, 33(7): 140—146. (in Chinese)
    [8] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2011. GB/T 228.1—2010 金属材料 拉伸试验 第1部分: 室温试验方法. 北京: 中国标准出版社.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration, 2011. JGJ/T 228.1—2010 Metallic materials-Tensile testing-Part 1: Method of test at room temperature. Beijing: Standards Press of China.
    [9] 中华人民共和国住房和城乡建设部, 2011. GB 50010—2010 混凝土结构设计规范. 北京: 中国建筑工业出版社.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, 2011. GB 50010—2010 Code for design of concrete structures. Beijing: China Architecture & Building Press.
    [10] 中华人民共和国住房和城乡建设部, 2015. JGJ/T 101—2015 建筑抗震试验规程. 北京: 中国建筑工业出版社.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, 2015. JGJ/T 101—2015 Specification for seismic test of buildings. Beijing: China Architecture & Building Press.
    [11] 中华人民共和国住房和城乡建设部, 2016. JGJ 99—2015 高层民用建筑钢结构技术规程. 北京: 中国建筑工业出版社.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, 2016. JGJ 99—2015 Technical specification for steel structure of tall building. Beijing: China Architecture & Building Press.
    [12] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局, 2019. GB/T 50081—2019 混凝土物理力学性能试验方法标准. 北京: 中国建筑工业出版社.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, State Administration for Market Regulation, 2019. GB/T 50081—2019 Standard for test methods of concrete physical and mechanical properties. Beijing: China Architecture & Building Press.
    [13] FEMA, 1996. FEMA273. NEHRP guidelines for the seismic rehabilitation of buildings. Washington: Federal Emergency Management Agency.
    [14] FEMA, 2007. FEMA461. Interim protocols for determining seismic performance characteristics of structural and nonstructural components through laboratory testing. Washington: Federal Emergency Management Agency.
    [15] Sun G. H. , Yang C. S. W. , Gu Q. , et al. , 2017. Cyclic tests of steel frames with concealed vertical slits in reinforced concrete infill walls. Journal of Structural Engineering, 143(11): 04017150. doi: 10.1061/(ASCE)ST.1943-541X.0001895
    [16] Sun G. H. , Gu Q. , Li Q. C. , et al. , 2018. Experimental and numerical study on the hysteretic behavior of composite partially restrained steel frame-reinforced concrete infill walls with vertical slits. Bulletin of Earthquake Engineering, 16(3): 1245—1272. doi: 10.1007/s10518-017-0245-0
    [17] Sun G. H. , Wei X. , Gu Q. , et al. , 2020. Performance-based plastic design of composite partially-restrained steel frame-reinforced concrete infill walls with concealed vertical slits. Bulletin of Earthquake Engineering, 18(4): 1445—1474. doi: 10.1007/s10518-019-00752-8
    [18] Sun G. H. , Hu Y. H. , Gu Q. , et al. , 2021. Capacity design for composite partially restrained steel frame-reinforced concrete infill walls with concealed vertical slits. The Structural Design of Tall and Special Buildings, 30(1): e1819.
  • 加载中
图(24) / 表(2)
计量
  • 文章访问数:  117
  • HTML全文浏览量:  58
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-11
  • 刊出日期:  2021-12-31

目录

    /

    返回文章
    返回