Quasi-static Test and Numerical Simulation of RC Shear Panel with Concealed Hollow Slits
-
摘要: 为明晰中空暗缝RC剪力墙抗剪机理和滞回性能,进行1榀1∶3缩尺单层、单跨中空暗缝RC剪力墙板拟静力试验,得到了试件破坏模式、滞回曲线、骨架曲线、刚度退化、强度退化、延性和耗能能力。通过数值模拟分析了混凝土强度、中空暗缝厚度、缝间墙配筋率对剪力墙板水平抗剪承载力的影响。研究结果表明:试件滞回曲线呈捏缩状,耗能能力一般,但具有较好的剪切变形能力;试件最终呈中空暗缝剪碎、缝间墙两端形成弯曲塑性铰的破坏模式;随着混凝土强度的提高和中空暗缝厚度的减小,试件水平抗剪承载力呈增加趋势;缝间墙配筋率对试件水平抗剪承载力及损伤状态的影响较小。Abstract: In order to clarify the shear mechanism and hysteretic behavior of RC shear wall with concealed hollow slits, one one-bay, one-story, RC shear wall specimen at one-third scale was tested under cyclic loading. The failure mode, hysteretic curve, skeleton curve, stiffness degradation, ductility and energy dissipation capacity of the specimen were obtained. The effect of concrete strength, concealed hollow slit thickness, and reinforcement ratio of slit wall on its lateral strength was investigated through numerical simulation. Results show that the specimen behaved the pinched hysteretic curve and minor energy dissipation, but moderate shear deformability. The specimen behaved the two-stage failure mode, i.e., the concrete crushing of concealed hollow slits at the first stage, and the development of flexural plastic hinges at both ends of slit walls during the second stage. With the increase in concrete strength and the decrease in concealed hollow slits thickness, the lateral strength of the specimens increased. The reinforcement ratio produced the slight effect on the lateral strength and damage states.
-
表 1 钢材力学性能
Table 1. Material properties of steel and steel bar
类型 厚度或直径/mm 屈服强度fy/MPa 极限强度fu/MPa 伸长率ε/% 槽钢腹板 5.1 333.40 405.58 24.30 直径4mm钢筋 4.0 270.52 465.24 11.31 直径6.5mm钢筋 6.5 379.20 538.03 26.44 表 2 试件RCIP位移及延性系数
Table 2. Deformation and ductility of specimen RCIP
加载方向 显著层间屈服位移角θy/% 峰值位移角θm/% 极限位移角θu/% 延性系数μ 正向 0.46 0.87 1.71 3.72 负向 0.38 1.03 1.58 4.16 均值 0.42 0.95 1.65 3.94 -
[1] 国家质量技术监督局, 中国国家标准化管理委员会, 2018. GB/T 2975—2018 钢及钢产品 力学性能试验取样位置及试样制备. 北京: 中国标准出版社.State Administration for Market Regulation, Standardization Administration of the People's Republic of China, 2018. GB/T 2975—2018 Steel and steel products--Location and preparation of samples and test pieces for mechanical testing. Beijing: Standards Press of China. (in Chinese) [2] 康胜, 曾勇, 叶列平, 2001. 双功能带缝剪力墙的刚度和承载力研究. 工程力学, 18(2): 27—34 doi: 10.3969/j.issn.1000-4750.2001.02.005Kang S. , Zeng Y. , Ye L. P. , 2001. Stiffness and strength analysis of dual functional slitted shear wall. Engineering Mechanics, 18(2): 27—34. (in Chinese) doi: 10.3969/j.issn.1000-4750.2001.02.005 [3] 廉晓飞, 邹超英, 1996. 带竖缝混凝土剪力墙板在低周反复荷载作用下的工作性能试验研究. 哈尔滨建筑大学学报, 29(1): 31—36Lian X. F. , Zou C. Y. , 1996. Test research on the working behavior of RC shear panels with vertical seams under low-cyclic loading. Journal of Harbin University of Architecture and Engineering, 29(1): 31—36. (in Chinese) [4] 孙国华, 顾强, 何若全等, 2010. 半刚接钢框架内填暗竖缝钢筋混凝土剪力墙结构滞回性能试验研究. 建筑结构学报, 31(9): 16—26Sun G. H. , Gu Q. , He R. Q. , et al. , 2010. Experimental investigation of partially-restrained steel frame with concealed vertical slits RC infill walls. Journal of Building Structures, 31(9): 16—26. (in Chinese) [5] 孙国华, 顾强, 张振涛等, 2014. 半刚接钢框架内填不同构造措施钢筋混凝土墙子结构抗震性能试验研究. 建筑结构学报, 35(10): 21—30Sun G. H. , Gu Q. , Zhang Z. T. , et al. , 2014. Experimental investigation on seismic behavior of partially-restrained steel frame subassemblages with different type of RC infill walls. Journal of Building Structures, 35(10): 21—30. (in Chinese) [6] 武藤清, 1984. 结构物动力设计. 滕家禄等, 译. 北京: 中国建筑工业出版社. [7] 赵伟, 童根树, 杨强跃, 2012. 钢框架内填预制带竖缝钢筋混凝土剪力墙抗震性能试验研究. 建筑结构学报, 33(7): 140—146Zhao W. , Tong G. S. , Yang Q. Y. , 2012. Experimental study on seismic behavior of steel frame with prefabricated reinforced concrete infill slit shear walls. Journal of Building Structures, 33(7): 140—146. (in Chinese) [8] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2011. GB/T 228.1—2010 金属材料 拉伸试验 第1部分: 室温试验方法. 北京: 中国标准出版社.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration, 2011. JGJ/T 228.1—2010 Metallic materials-Tensile testing-Part 1: Method of test at room temperature. Beijing: Standards Press of China. [9] 中华人民共和国住房和城乡建设部, 2011. GB 50010—2010 混凝土结构设计规范. 北京: 中国建筑工业出版社.Ministry of Housing and Urban-Rural Development of the People’s Republic of China, 2011. GB 50010—2010 Code for design of concrete structures. Beijing: China Architecture & Building Press. [10] 中华人民共和国住房和城乡建设部, 2015. JGJ/T 101—2015 建筑抗震试验规程. 北京: 中国建筑工业出版社.Ministry of Housing and Urban-Rural Development of the People’s Republic of China, 2015. JGJ/T 101—2015 Specification for seismic test of buildings. Beijing: China Architecture & Building Press. [11] 中华人民共和国住房和城乡建设部, 2016. JGJ 99—2015 高层民用建筑钢结构技术规程. 北京: 中国建筑工业出版社.Ministry of Housing and Urban-Rural Development of the People’s Republic of China, 2016. JGJ 99—2015 Technical specification for steel structure of tall building. Beijing: China Architecture & Building Press. [12] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局, 2019. GB/T 50081—2019 混凝土物理力学性能试验方法标准. 北京: 中国建筑工业出版社.Ministry of Housing and Urban-Rural Development of the People’s Republic of China, State Administration for Market Regulation, 2019. GB/T 50081—2019 Standard for test methods of concrete physical and mechanical properties. Beijing: China Architecture & Building Press. [13] FEMA, 1996. FEMA273. NEHRP guidelines for the seismic rehabilitation of buildings. Washington: Federal Emergency Management Agency. [14] FEMA, 2007. FEMA461. Interim protocols for determining seismic performance characteristics of structural and nonstructural components through laboratory testing. Washington: Federal Emergency Management Agency. [15] Sun G. H. , Yang C. S. W. , Gu Q. , et al. , 2017. Cyclic tests of steel frames with concealed vertical slits in reinforced concrete infill walls. Journal of Structural Engineering, 143(11): 04017150. doi: 10.1061/(ASCE)ST.1943-541X.0001895 [16] Sun G. H. , Gu Q. , Li Q. C. , et al. , 2018. Experimental and numerical study on the hysteretic behavior of composite partially restrained steel frame-reinforced concrete infill walls with vertical slits. Bulletin of Earthquake Engineering, 16(3): 1245—1272. doi: 10.1007/s10518-017-0245-0 [17] Sun G. H. , Wei X. , Gu Q. , et al. , 2020. Performance-based plastic design of composite partially-restrained steel frame-reinforced concrete infill walls with concealed vertical slits. Bulletin of Earthquake Engineering, 18(4): 1445—1474. doi: 10.1007/s10518-019-00752-8 [18] Sun G. H. , Hu Y. H. , Gu Q. , et al. , 2021. Capacity design for composite partially restrained steel frame-reinforced concrete infill walls with concealed vertical slits. The Structural Design of Tall and Special Buildings, 30(1): e1819.