Study on Seismic Behavior of CFRP Reinforced Rectangular Precast Shear Wall with Energy-dissipating Vertical Joints
-
摘要: 以一字形竖缝耗能预制剪力墙作为研究对象,设计了3个装配式剪力墙试件及1个现浇剪力墙对比试件,进行低周往复荷载试验,并对破坏墙体进行CFRP加固,再次进行拟静力试验。试件变化参数包括轴压比、混凝土强度等级及配筋率,对比分析加固前后试件滞回性能、刚度退化、承载力和耗能能力等性能。试验结果表明,与现浇剪力墙相比,一字形竖缝耗能预制剪力墙工作性能良好,阻尼器屈服耗能提高了试件整体工作性能;CFRP加固可有效抑制墙体斜裂缝的发展,对墙体承载力及耗能能力均有显著改善作用;各试件均满足剪力墙弹塑性层间位移角限值要求,延性较好;试件整体表现出良好的抗震性能。Abstract: Taking the precast shear wall with energy-dissipating vertical joints as the research object, three precast shear wall specimens and one cast-in-place shear wall specimen were designed to carry out the low-cycle reciprocating load test, and the damaged specimens were reinforced with carbon fiber cloth, and the pseudo-static test was carried out. The changing parameters of the specimens were axial compression ratio (0.1, 0.3), concrete strength and reinforcement ratio. The hysteretic behavior, stiffness degradation, bearing capacity and energy dissipation capacity of the specimens before and after reinforcement were compared and analyzed. The results show that: compared with the cast-in-place shear wall, the working performance of the rectangular shear wall with energy-dissipating vertical joints is good, and the dampers improve the overall working performance of the specimen; CFRP reinforcement can effectively inhibit the development of the inclined cracks of the wall, and significantly improve the bearing capacity and energy-dissipating capacity. All specimens meet the limit of elastoplastic interlayer displacement Angle of shear wall and have good ductility. The specimens show good seismic performance.
-
Key words:
- Precast shear wall /
- Vertical joint /
- CFRP reinforcement /
- Ductility /
- Seismic performance
-
表 1 试件设计参数
Table 1. Design parameters of specimen
编号 混凝土强度等级 竖缝宽度/
mm轴压比 YX-0.1 C30 — 0.1 Y-0.1/SY-0.1 C30 250 0.1 YA-0.1/SYA-0.1 C40 250 0.1 YA-0.3/SYA-0.3 C40 250 0.3 表 2 混凝土材料性能
Table 2. properties of concrete materials
混凝土强度等级 立方体抗压强度平均值/
MPa轴心抗压强度平均值/
MPaC30 32.8 21.94 C40 41.8 27.96 表 3 钢筋材料性能
Table 3. Material properties of steel bar
钢筋直径/mm 屈服应力/MPa 极限应力/MPa 强屈比$ {\text{λ }} $ 8 475 688 1.45 10 473 696 1.47 12 451 609 1.35 25 465 658 1.42 表 4 加载方案
Table 4. Loading scheme table
编号 层间位移角 顶点位移/mm 循环次数 1 1.0/840 3.4 2 2 2.0/840 6.9 2 3 4.0/840 13.7 2 4 7.0/840 24.0 2 5 10.5/840 36.0 2 6 14.0/840 48.0 2 7 17.5/840 60.0 2 8 21.0/840 72.0 2 表 5 试件特征点荷载
Table 5. Load at characteristic point of specimen
试件编号 加载方向 开裂荷载/kN 开裂位移/mm 屈服荷载/kN 屈服位移/mm 峰值荷载/kN 峰值位移/mm 位移延性系数 Y-0.1 正 80.30 3.91 185.30 15.86 259.81 48.00 3.03 负 118.33 5.64 252.34 15.34 428.23 48.00 3.13 YA-0.1 正 166.81 6.74 328.07 17.36 562.58 56.34 3.25 负 132.74 6.20 338.50 18.46 720.57 52.65 2.85 YA-0.3 正 168.09 8.33 273.93 17.02 514.85 58.06 3.41 负 133.90 6.73 421.25 18.26 679.39 54.47 2.98 YX-0.1 正 177.57 7.66 216.57 19.96 363.39 58.32 2.92 负 112.61 8.18 239.70 19.61 351.63 56.52 2.88 SY-0.1 正 — — 186.38 24.94 286.96 72.24 2.90 负 — — 311.91 29.09 446.25 71.85 2.47 SYA-0.1 正 — — 311.43 21.49 528.05 38.64 1.80 负 — — 307.30 23.80 514.08 43.07 1.81 SYA-0.3 正 — — 230.27 23.27 473.45 54.31 2.33 负 — — 477.09 31.66 725.45 50.31 1.59 表 6 等效黏滞阻尼系数
Table 6. Equivalent viscous damping coefficient
加载位移/mm 试件Y-0.1 试件YA-0.1 试件YA-0.3 试件YX-0.1 试件SY-0.1 试件SYA-0.1 试件SYA-0.3 3.4 0.332 0.334 0.346 0.339 0.318 0.351 0.333 6.9 0.326 0.340 0.361 0.357 0.323 0.332 0.331 13.7 0.332 0.351 0.362 0.373 0.338 0.341 0.353 24.0 0.336 0.362 0.371 0.378 0.356 0.345 0.374 36.0 — 0.355 0.379 0.384 0.373 0.365 0.387 48.0 0.344 0.366 0.383 0.401 0.379 0.362 0.391 60.0 — 0.375 0.388 0.402 0.393 0.342 0.384 72.0 — — — 0.417 0.412 — 0.428 -
[1] 邓宗才, 曾洪超, 2012. 层内混杂FRP加固混凝土剪力墙抗震性能试验. 北京工业大学学报, 38(10): 1504—1508.Deng Z. C. , Zeng H. C. , 2012. Experiment on seismic performance of reinforced concrete shear walls strengthened with hybrid FRP. Journal of Beijing University of Technology, 38(10): 1504—1508. (in Chinese) [2] 丁祖贤, 2019. 钢板阻尼器在预制剪力墙结构竖缝的应用研究. 唐山: 华北理工大学.Ding Z. X., 2019. The study on application of steel plate dampers in vertical joints of prefabricated shear wall structures. Tangshan: North China University of Science and Technology. (in Chinese) [3] 谷玉珍, 2019. 摩擦阻尼器在预制剪力墙竖缝的应用研究. 唐山: 华北理工大学.Gu Y. Z., 2019. Application of friction damper in vertical joint of prefabricated shear wal. Tangshan: North China University of Science and Technology. (in Chinese) [4] 王宇亮, 崔洪军, 张玉敏等, 2019. 不同开缝形式的软钢阻尼器受力性能分析及试验研究. 工业建筑, 49(10): 170—174.Wang Y. L. , Cui H. J. , Zhang Y. M. , et al. , 2019. Analysis and experimental research on mechanical properties of mild damper with different slit forms. Industrial Construction, 49(10): 170—174. (in Chinese) [5] 武藤清, 1984. 结构物动力设计. 藤家禄, 译. 北京: 中国建筑工业出版社. [6] 袁新禧, 潘志宏, 李爱群等, 2014a. 带竖缝及金属阻尼器混凝土剪力墙抗震性能研究. 土木工程学报, 47(S1): 118—123.Yuan X. X. , Pan Z. H. , Li A. Q. , et al. , 2014a. Analysis of the slit and metallic dampers concrete shear wall seismic performance. China Civil Engineering Journal, 47(S1): 118—123. (in Chinese) [7] 袁新禧, 郑杰, 李爱群等, 2014b. 带竖缝及金属阻尼器混凝土剪力墙抗震性能试验研究. 工程抗震与加固改造, 36(6): 7—12, 65.Yuan X. X. , Zheng J. , Li A. Q. , et al. , 2014b. Experimental study on seismic performance of concrete shear walls with metal damper in vertical gaps. Earthquake Resistant Engineering and Retrofitting, 36(6): 7—12, 65. (in Chinese) [8] 张建伟, 曹万林, 刘建民等, 2000. 带双层暗支撑开竖缝剪力墙抗震性能试验研究. 世界地震工程, 16(4): 87—91. doi: 10.3969/j.issn.1007-6069.2000.04.016Zhang J. W. , Cao W. L. , Liu J. M. , et al. , 2000. Experiment study on aseismatic property of R. C shear wall with two-storied concealed bracing and slits. World Information on Earthquake Engineering, 16(4): 87—91. (in Chinese) doi: 10.3969/j.issn.1007-6069.2000.04.016 [9] 张雷磊, 2017. CFRP加固震损型钢混凝土短肢剪力墙抗震性能试验研究. 南宁: 广西大学.Zhang L. L., 2017. CFRP strengthening seismic resistance of damaged steel reinforced squat shear wall. Nanning: Guangxi University. (in Chinese) [10] 张远淼, 余江滔, 陆洲导等, 2015. ECC修复震损剪力墙抗震性能试验研究. 工程力学, 32(1): 72—80.Zhang Y. M., Yu J. T., Lu Z. D., et al., 2015. Experimental test on aseismic behavior of damaged reinforced concrete shear wallrepaired with ECC. Engineering Mechanics, 32(1): 72−80. (in Chinese) [11] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2010. GB 50011-2010 建筑抗震设计规范. 北京: 中国建筑工业出版社.Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2010. GB 50011-2010 Code for seismic design of buildings. Beijing: China Architecture & Building Press. (in Chinese) [12] 中华人民共和国住房和城乡建设部, 2014. GB 50367-2013 混凝土结构加固设计规范. 北京: 中国建筑工业出版社.Ministry of Housing and Urban-Rural Development of the People's Republic of China, 2014. GB 50367-2013 Code for design of strengthening concrete structure. Beijing: China Architecture & Building Press. (in Chinese) [13] 中华人民共和国住房和城乡建设部, 2015. JGJ/T 101-2015 建筑抗震试验规程. 北京: 中国建筑工业出版社.Ministry of Housing and Urban-Rural Development of the People's Republic of China, 2015. JGJ/T 101-2015 Specification for seismic test of buildings. Beijing: China Architecture & Building Press. (in Chinese) [14] Antoniades K. K. , Salonikios T. N. , Kappos A. J. , 2003. Cyclic tests on seismically damaged R/C walls strengthened using FRP reinforcement. Aci Structural Journal, 25: 1515—1523. [15] Pantelides C. P. , Volnyy V. A. , Gergely J. , et al. , 2003. Seismic retrofit of precast concrete panel connections with carbon fiber reinforced polymer composites. PCI Journal, 48(1): 92—104. doi: 10.15554/pcij.01012003.92.104 [16] Todut C. , Dan D. , Stoian V. , 2015. Numerical and experimental investigation on seismically damaged reinforced concrete wall panels retrofitted with FRP composites. Composite Structures, 119: 648—665. doi: 10.1016/j.compstruct.2014.09.047