• ISSN 1673-5722
  • CN 11-5429/P

基于应变能耗储的钢筋混凝土框架结构地震损伤演化研究

苏佶智 刘伯权 宋猛 马煜东 黄娇

苏佶智,刘伯权,宋猛,马煜东,黄娇,2021. 基于应变能耗储的钢筋混凝土框架结构地震损伤演化研究. 震灾防御技术,16(3):533−543. doi:10.11899/zzfy20210313. doi: 10.11899/zzfy20210313
引用本文: 苏佶智,刘伯权,宋猛,马煜东,黄娇,2021. 基于应变能耗储的钢筋混凝土框架结构地震损伤演化研究. 震灾防御技术,16(3):533−543. doi:10.11899/zzfy20210313. doi: 10.11899/zzfy20210313
Su Jizhi, Liu Boquan, Song Meng, Ma Yudong, Huang Jiao. Research on Seismic Damage Evolution of Reinforced Concrete Frame Structures Based on Strain-energy Consumption-storage Theory[J]. Technology for Earthquake Disaster Prevention, 2021, 16(3): 533-543. doi: 10.11899/zzfy20210313
Citation: Su Jizhi, Liu Boquan, Song Meng, Ma Yudong, Huang Jiao. Research on Seismic Damage Evolution of Reinforced Concrete Frame Structures Based on Strain-energy Consumption-storage Theory[J]. Technology for Earthquake Disaster Prevention, 2021, 16(3): 533-543. doi: 10.11899/zzfy20210313

基于应变能耗储的钢筋混凝土框架结构地震损伤演化研究

doi: 10.11899/zzfy20210313
基金项目: 国家自然科学基金项目(51578077)
详细信息
    作者简介:

    苏佶智,男,生于1989年。博士,工程师。主要从事建筑结构抗震减震研究。E-mail:sujizhi1989@163.com

    通讯作者:

    刘伯权,男,生于1956年。教授,博士生导师。主要从事建筑结构抗震减震研究。E-mail:bqliu@chd.edu.cn

Research on Seismic Damage Evolution of Reinforced Concrete Frame Structures Based on Strain-energy Consumption-storage Theory

  • 摘要: 结构地震损伤破坏,本质上是地震动输入能量超出结构或构件耗能能力所致。“能量”参数能够综合反映地震动强度、频谱特性以及强震持时对结构破坏的影响,本文基于能量耗散原理建立结构损伤模型,采用有限元软件ABAQUS对3榀单层单跨钢筋混凝土平面框架结构抗震性能进行数值模拟,通过损伤指数量化研究了地震作用下钢筋混凝土框架结构的损伤演化规律。研究表明:基于应变能耗储的结构损伤模型,能够合理有效地反映“位移首超破坏”与“累积损伤破坏”模式,且上、下界收敛;模拟分析得到的滞回曲线和骨架曲线与试验数据吻合较好,数值建模方法适用于以梁、柱构件为主的框架结构抗震性能分析;耗能构件框架梁能够对结构损伤破坏发展和抗震性能劣化起到一定延缓作用,承力构件框架柱的损伤加剧会加速结构抗震性能的劣化;加载幅值较小时,结构依靠混凝土裂缝闭合摩擦消耗能量,“位移首超破坏”所致损伤所占比例较大,随着位移幅值及循环次数的增加,“累积损伤破坏”所致损伤所占比例逐渐增大。
  • 图  1  基底剪力-顶点位移曲线

    Figure  1.  Base shear-top displacement curves

    图  2  结构损伤的划分

    Figure  2.  Division of the structural damage

    图  3  结构损伤的二折线简化

    Figure  3.  Structural damage simplification as two-fold line

    图  4  试件几何参数及截面配筋示意

    Figure  4.  Geometric parameters and sectional reinforcements of specimen

    图  5  纤维梁单元截面示意

    Figure  5.  Diagram of fiber unit section

    图  6  混凝土材料滞回本构模型

    Figure  6.  Hysteretic constitutive model of concrete

    图  7  钢筋材料滞回本构模型

    Figure  7.  Hysteretic constitutive model of steel

    图  8  试验滞回曲线与数值计算滞回曲线对比

    Figure  8.  Comparison between test hysteresis-curves and computational hysteresis-curves

    图  9  试验骨架曲线与数值计算骨架曲线对比

    Figure  9.  Comparison between test skeleton-curves and computational skeleton-curves

    图  10  试件损伤发展曲线

    Figure  10.  Damage development curves of test specimen

    图  11  试件F0损伤破坏现象

    Figure  11.  Failure phenomena of specimen F0

    图  12  试件F1损伤破坏现象

    Figure  12.  Failure phenomena of specimen F1

    图  13  试件F2损伤破坏现象

    Figure  13.  Failure phenomena of specimen F2

    表  1  不同损伤状态对应的损伤指数范围

    Table  1.   Damage indices corresponding to individual levels

    损伤等级破坏现象描述损伤指数
    基本完好承重构件完好,
    个别耗能构件轻微开裂
    0.00~0.15
    轻微破坏个别承重构件轻微开裂,
    个别耗能构件明显破坏
    0.15~0.30
    中等破坏多数承重构件轻微开裂、部分明显开裂,
    个别耗能构件严重破坏
    0.30~0.60
    严重破坏多数承重、耗能构件严重破坏0.60~0.80
    倒塌多数承重构件倒塌,
    耗能构件普遍破坏
    0.80~1.00
    下载: 导出CSV

    表  2  平面框架各受力阶段的损伤指数

    Table  2.   Damage indices corresponding to individual loading phases

    损伤等级损伤情况试件F0试件F1试件F2
    DrDhDrDhDrDh
    基本完好指数0.08660.01070.10250.01960.09820.0174
    比例/%891184168515
    轻微破坏指数0.17890.04480.20920.05910.19910.0468
    比例/%802078228119
    中等破坏指数0.31090.19980.31040.23430.30700.2047
    比例/%614957436040
    严重破坏指数0.39580.36540.36510.42880.37870.4104
    比例/%524846544852
    倒塌破坏指数0.34960.62170.32000.68000.36300.6183
    比例/%366432633763
    下载: 导出CSV
  • [1] 贺景然, 陈建兵, 任晓丹等, 2021. 基于不同损伤本构模型的钢筋混凝土剪力墙结构数值模拟. 建筑结构学报, 42(6): 139—149.

    He J. R., Chen J. B., Ren X. D., et al., 2021. Numerical simulation of RC shear wall structure based on different damage constitutive models of concrete. Journal of Building Structures, 42(6): 139—149. (in Chinese)
    [2] 李忠献, 陈宇, 李宁, 2014. 基于材料损伤的钢筋混凝土构件损伤模型. 工程力学, 31(6): 53—59.

    Li Z. X., Chen Y., Li N., 2014. A damage model for reinforced concrete members based on material damage. Engineering Mechanics, 31(6): 53—59. (in Chinese)
    [3] 刘文锋, 王来其, 高彦强等, 2014. 高强钢筋混凝土框架抗震性能试验研究. 土木工程学报, 47(11): 64—74.

    Liu W. F., Wang L. Q., Gao Y. Q., et al., 2014. Experimental study on seismic behavior of high-strength reinforced concrete frame. China Civil Engineering Journal, 47(11): 64—74. (in Chinese)
    [4] 刘祖强, 任甭优, 薛建阳等, 2021. 型钢混凝土异形柱框架地震损伤分析. 工程力学, 38(1): 143—153. doi: 10.6052/j.issn.1000-4750.2020.02.0123

    Liu Z. Q., Ren B. Y., Xue J. Y., et al., 2021. Seismic damage analysis on steel reinforced concrete frames with special-shaped columns. Engineering Mechanics, 38(1): 143—153. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.02.0123
    [5] 吕海霞, 滕军, 李祚华, 2014. 高层建筑结构基于整体稳定的失效判别方法. 建筑科学, 30(1): 61—66, 70. doi: 10.3969/j.issn.1002-8528.2014.01.012

    Lv H. X., Teng J., Li Z. H., 2014. Analysis on gravity second-order effects and the overall stability of the high-rise structure. Building Science, 30(1): 61—66, 70. (in Chinese) doi: 10.3969/j.issn.1002-8528.2014.01.012
    [6] 吕杨, 徐龙河, 李忠献等, 2010. 基于纤维模型的钢筋混凝土结构动力弹塑性分析. 震灾防御技术, 5(2): 257—262. doi: 10.3969/j.issn.1673-5722.2010.02.014

    Lv Y., Xu L. H., Li Z. X., et al., 2010. Dynamic elasto-plastic analysis of reinforced concrete structure based on fiber model. Technology for Earthquake Disaster Prevention, 5(2): 257—262. (in Chinese) doi: 10.3969/j.issn.1673-5722.2010.02.014
    [7] 曲哲, 叶列平, 2011. 基于有效累积滞回耗能的钢筋混凝土构件承载力退化模型. 工程力学, 28(6): 45—51.

    Qu Z., Ye L. P., 2011. Strength deterioration model based on effective hysteretic energy dissipation for RC members under cyclic loading. Engineering Mechanics, 28(6): 45—51. (in Chinese)
    [8] 王中阳, 车佳玲, 张尚荣等, 2018. 基于能量方法设计的RC框架结构易损性分析. 震灾防御技术, 13(3): 524-533. doi: 10.11899/zzfy20180304

    Wang Z. Y., Che J. L., Zhang S. R., et al., 2018. Seismic fragility analysis of RC frame structure based on energy balance. Technology for Earthquake Disaster Prevention, 13(3): 524—533. (in Chinese) doi: 10.11899/zzfy20180304
    [9] 曾武华, 王逢朝, 卓卫东, 2016. 采用变形和能量双重准则的钢筋混凝土桥墩地震损伤模型. 华侨大学学报(自然科学版), 37(4): 441—446. doi: 10.11830/ISSN.1000-5013.201604010

    Zeng W. H., Wang F. C., Zhuo W. D., 2016. Deformation and energy-based seismic damage model of reinforced concrete bridge piers. Journal of Huaqiao University (Natural Scicncc), 37(4): 441—446. (in Chinese) doi: 10.11830/ISSN.1000-5013.201604010
    [10] 周知, 钱江, 黄维, 2016. 基于修正的Park-Ang损伤模型在钢构件中的应用. 建筑结构学报, 37(S1): 448—454.

    Zhou Z., Qian J., Huang W., 2016. Application of modified Park-Ang damage model to steel members. Journal of Building Structures, 37(S1): 448—451. (in Chinese)
    [11] Cao S. S., Jiang L. Z., Wei B., 2019. Numerical and experimental investigations on the Park-Ang damage index for high-speed railway bridge piers with flexure failures. Engineering Structures, 201: 109851. doi: 10.1016/j.engstruct.2019.109851
    [12] Clough R. W., Johnston S. B., 1966. Effect of stiffness degradation on earthquake ductility requirements. In: Proceedings of Japan Earthquake Engineering Symposium. Tokyo, 227—232.
    [13] Federal Emergency Management Agency, 2000. Prestandard and commentary for the seismic rehabilitation of buildings. Washington: Federal Emergency Management Agency.
    [14] Iervolino I., Giorgio M., Chioccarelli E., 2016. Markovian modeling of seismic damage accumulation. Earthquake Engineering & Structural Dynamics, 45(3): 441—461.
    [15] Lee J., Kong J., Kim J., 2018. Seismic performance evaluation of steel diagrid buildings. International Journal of Steel Structures, 18(3): 1035—1047. doi: 10.1007/s13296-018-0044-8
    [16] Scott B. D., Park R., Priestley M. J. N., 1982. Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates. ACI Structural Journal, 79(1): 13—27.
    [17] Ventura A., Chiaia B., De Biagi V., 2017. Robustness assessment of RC framed structures against progressive collapse. IOP Conference Series: Materials Science and Engineering, 245(3): 032033.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  44
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-22
  • 刊出日期:  2021-09-30

目录

    /

    返回文章
    返回