• ISSN 1673-5722
  • CN 11-5429/P

基于卷积神经网络的速度大脉冲识别方法研究

牛志辉 陈波 卜春尧

牛志辉,陈波,卜春尧,2021. 基于卷积神经网络的速度大脉冲识别方法研究. 震灾防御技术,16(3):485−491. doi:10.11899/zzfy20210307. doi: 10.11899/zzfy20210307
引用本文: 牛志辉,陈波,卜春尧,2021. 基于卷积神经网络的速度大脉冲识别方法研究. 震灾防御技术,16(3):485−491. doi:10.11899/zzfy20210307. doi: 10.11899/zzfy20210307
Niu Zhihui, Chen Bo, Bu Chunyao. Identification of Pulse-like Strong Ground Motions Based on Convolution Neural Network[J]. Technology for Earthquake Disaster Prevention, 2021, 16(3): 485-491. doi: 10.11899/zzfy20210307
Citation: Niu Zhihui, Chen Bo, Bu Chunyao. Identification of Pulse-like Strong Ground Motions Based on Convolution Neural Network[J]. Technology for Earthquake Disaster Prevention, 2021, 16(3): 485-491. doi: 10.11899/zzfy20210307

基于卷积神经网络的速度大脉冲识别方法研究

doi: 10.11899/zzfy20210307
基金项目: 国家重点研发计划(2019YFC1509402);中国地震局地球物理研究所基本科研业务费专项(DQJB19A0132)
详细信息
    作者简介:

    牛志辉,男,生于1992年。硕士研究生。主要从事人工智能算法的速度脉冲型地震动研究。E-mail:niuzhihui18@mails.ucas.ac.cn

    通讯作者:

    陈波,男,生于1987年。副研究员。主要从事地震动特性研究。E-mail:chenbo@cea-igp.ac.cn

Identification of Pulse-like Strong Ground Motions Based on Convolution Neural Network

  • 摘要: 含速度大脉冲的强地震动具有复杂的特性,人工提取速度大脉冲特征的方法较繁琐,故利用卷积神经网络(CNN)在图像特征自动提取方面的优势,提出基于卷积神经网络图像识别的速度大脉冲识别方法。基于美国太平洋地震工程研究中心NGA-West1数据库提供的强地震动记录,筛选出6 000条非脉冲记录和91条含有速度大脉冲的强地震动记录。采用在原始记录中加入高斯噪声和过采样的方法,使2类记录样本数量达到均衡。利用本文建立的卷积神经网络模型对2类记录速度时程图进行特征自动提取和分类识别,结果显示测试集准确率为99%,表明本文卷积神经网络模型能够自动提取速度大脉冲特征,进而复现已有结果。将本文方法与传统方法进行了对比,结果表明,对含有多个速度脉冲的强地震动记录的识别,本文方法优于传统方法,具有较高的可靠性、鲁棒性、灵活性。
  • 图  1  CNN模型结构

    Figure  1.  Basic structure of convolutional neural network basic structure

    图  2  本文搭建的CNN模型结构

    Figure  2.  Convolutional neural network structure

    图  3  预处理前后的波形图

    Figure  3.  Waveform before and after preprocessing

    图  4  预处理前后提取的脉冲时程

    Figure  4.  Pulse extracted before and after preprocessing

    图  5  评价指标曲线

    Figure  5.  Evaluation indication curve

    图  6  PI为0.15~0.85

    Figure  6.  PI is between 0.15 and 0.85

    图  7  PI小于0.15

    Figure  7.  PI is less than 0.15

    表  1  地震动记录信息及识别结果

    Table  1.   Ground motion record information and identification results

    地震动编号地震名称PI(Baker,2007CNN识别结果
    RSN180Imperial Valley-060.23速度脉冲
    RSN292Irpinia, Italy-010.13速度脉冲
    RSN1013Northridge-010.08速度脉冲
    RSN1489Chi-Chi0.77速度脉冲
    RSN2628Chi-Chi0.04速度脉冲
    RSN3317Chi-Chi0.28速度脉冲
    下载: 导出CSV
  • [1] 段友祥,李根田,孙歧峰,2016.卷积神经网络在储层预测中的应用研究.通信学报,37(S1):1—9.

    Duan Y. X., Li G. T., Sun Q. F., 2016. Research on convolutional neural network for reservoir parameter prediction. Journal on Communications, 37(S1): 1—9. (in Chinese)
    [2] 罗全波,陈学良,高孟潭等,2018.近断层速度脉冲与震源机制的关系浅析.震灾防御技术,13(3):646—661.

    Luo Q. B., Chen X. L., Gao M. T., et al., 2018. Relationship between near-fault velocity pulse and focal mechanism. Technology for Earthquake Disaster Prevention, 13(3): 646—661. (in Chinese)
    [3] 曲哲,师骁,2016.汶川地震和鲁甸地震的脉冲型地震动比较研究.工程力学,33(8):150—157. doi: 10.6052/j.issn.1000-4750.2015.01.0039

    Qu Z., Shi X., 2016. Comparative study on the pulse-like ground motions in the Wenchuan and the Ludian earthquakes. Engineering Mechanics, 33(8): 150—157. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.01.0039
    [4] 谢俊举,温增平,高孟潭等,2011.2008年汶川地震近断层地震动的非平稳特征.地球物理学报,54(3):728—736. doi: 10.3969/j.issn.0001-5733.2011.03.012

    Xie J. J., Wen Z. P., Gao M. T., et al., 2011. Non-stationary characteristics of near-fault strong motions during the 2008 Wenchuan earthquake. Chinese Journal of Geophysics, 54(3): 728—736. (in Chinese) doi: 10.3969/j.issn.0001-5733.2011.03.012
    [5] 杨成,唐泽楠,常志旺等,2017.基于经验模态分解的速度脉冲型地震动量化识别.工程力学,34(4):206—212.

    Yang C., Tang Z. N., Chang Z. W., et al., 2017. EMD-based quantitative categorization for velocity pulse-like ground motions. Engineering Mechanics, 34(4): 206—212. (in Chinese)
    [6] 杨福剑, 王国新. 2019. 一种改进的近断层脉冲型地震动模拟方法. 震灾防御技术, 14(3): 489—500. doi: 10.11899/zzfy20190303

    Yang F. J., Wang G. X., 2019. An improved approach for near-fault pulse-like ground motion simulation. Technology for Earthquake Disaster Prevention, 14(3): 489—500. (in Chinese) doi: 10.11899/zzfy20190303
    [7] 赵明,陈石,Yuen D.,2019.基于深度学习卷积神经网络的地震波形自动分类与识别.地球物理学报,62(1):374—382. doi: 10.6038/cjg2019M0151

    Zhao M., Chen S., Yuen D., 2019. Waveform classification and seismic recognition by convolution neural network. Chinese Journal of Geophysics, 62(1): 374—382. (in Chinese) doi: 10.6038/cjg2019M0151
    [8] 朱继梅,1996.小波变换及其工程应用(连载) 第二讲 小波系数的性质及变换算法.振动与冲击,15(3):94—101.
    [9] Baker J. W., 2007. Quantitative classification of near-fault ground motions using wavelet analysis. Bulletin of the Seismological Society of America, 97(5): 1486—1501. doi: 10.1785/0120060255
    [10] Krizhevsky A., Sutskever I., Hinton G. E., 2012. Imagenet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada: Curran Associates Inc., 1097—1105.
    [11] Mavroeidis G. P., Papageorgiou A. S., 2003. A mathematical representation of near-fault ground motions. Bulletin of the Seismological Society of America, 93(3): 1099—1131. doi: 10.1785/0120020100
    [12] Perol T., Gharbi M., Denolle M., 2018. Convolutional neural network for earthquake detection and location. Science Advances, 4(2): e1700578. doi: 10.1126/sciadv.1700578
    [13] Ross Z. E., Meier M. A., Hauksson E., et al., 2018. Generalized seismic phase detection with deep learning. Bulletin of the Seismological Society of America, 108(5A): 2894—2901. doi: 10.1785/0120180080
    [14] Somerville P. G., 2003. Magnitude scaling of the near fault rupture directivity pulse. Physics of the Earth and Planetary Interiors, 137(1—4): 201—212. doi: 10.1016/S0031-9201(03)00015-3
    [15] Zhai C. H., Chang Z. W., Li S., et al., 2013. Quantitative identification of near-fault pulse-like ground motions based on energy. Bulletin of the Seismological Society of America, 103(5): 2591—2603. doi: 10.1785/0120120320
    [16] Zhao G. C., Xu L. J., Xie L. L., 2016. A simple and quantitative algorithm for identifying pulse-like ground motions based on zero velocity point method. Bulletin of the Seismological Society of America, 106(3): 1011—1023. doi: 10.1785/0120150226
    [17] Zhu W. Q., Beroza G. C., 2019. PhaseNet: a deep-neural-network-based seismic arrival-time picking method. Geophysical Journal International, 216(1): 261—273.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  164
  • HTML全文浏览量:  56
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-30
  • 刊出日期:  2021-09-30

目录

    /

    返回文章
    返回