• ISSN 1673-5722
  • CN 11-5429/P

地震波面波空间相干性规律研究

朱园园 丁海平

朱园园,丁海平,2021. 地震波面波空间相干性规律研究. 震灾防御技术,16(3):467−475. doi:10.11899/zzfy20210305. doi: 10.11899/zzfy20210305
引用本文: 朱园园,丁海平,2021. 地震波面波空间相干性规律研究. 震灾防御技术,16(3):467−475. doi:10.11899/zzfy20210305. doi: 10.11899/zzfy20210305
Zhu Yuanyuan, Ding Haiping. Preliminary Study on the Spatial Coherency of Surface Wave[J]. Technology for Earthquake Disaster Prevention, 2021, 16(3): 467-475. doi: 10.11899/zzfy20210305
Citation: Zhu Yuanyuan, Ding Haiping. Preliminary Study on the Spatial Coherency of Surface Wave[J]. Technology for Earthquake Disaster Prevention, 2021, 16(3): 467-475. doi: 10.11899/zzfy20210305

地震波面波空间相干性规律研究

doi: 10.11899/zzfy20210305
基金项目: 国家自然科学基金项目(51678383)
详细信息
    作者简介:

    朱园园,女,生于1993年。硕士研究生。主要从事地震工程方面的研究。E-mail:yuany_zhu@163.com

    通讯作者:

    丁海平,男,生于1966年。教授。主要从事地震工程和防灾减灾工程方面的研究。E-mail:hpding@126.com

Preliminary Study on the Spatial Coherency of Surface Wave

  • 摘要: 本文选取台湾LSST、SMART-1台阵地震记录,分别计算不同间距S波和面波相干系数,采用Loh提出的相干函数模型对计算结果进行参数拟合。研究结果表明,当台站间距$ d < \text{50}\;{\rm{m}} $时,面波和S波相干系数基本相同;当台站间距$d = \text{500}\;{\rm{m}}$时,面波相干系数小于S波相干系数,且随着台站间距的增大,二者的差别逐渐增大;当台站间距$ d > \text{500}\;{\rm{m}}$时,面波空间相干性几乎不存在,可不考虑。本文给出的面波相干函数模型参数可作为大型盆地中的长大结构抗震分析时合成地震动场的参考。
  • 图  1  SMART-1台阵和LSST台阵相对位置示意

    Figure  1.  Relative positions of SMART-1 array and LSST array

    图  2  LSST台阵布置

    Figure  2.  The LSST seismograph array

    图  3  东西向加速度时程及S波时间窗

    Figure  3.  Acceleration traces of EW components and the S-wave time window we used

    图  4  各台站不同波形的能量占比

    Figure  4.  The energy proportion of different waves for each station

    图  5  不同台站间距的S波相干系数

    Figure  5.  Coherency coefficients of S-wave for different distances

    图  6  不同台站间距的面波相干系数

    Figure  6.  Coherency coefficients of surface wave for different distances

    图  7  不同间距下S波和面波拟合相干系数对比

    Figure  7.  Comparison of the coherency coefficients of S-wave and surface wave for different distances

    表  1  LSST台阵台站间距和相应的台站对

    Table  1.   Station spacing and station pairs of LSST array

    台站间距d/m台站对
    3 FA1-1—FA1-2,FA2-1—FA2-2,FA3-1—FA3-2
    6 FA1-2—FA1-3,FA1-3—FA1-4,FA2-2—FA2-3,
    FA3-2—FA3-3,FA3-3—FA3- 4
    9 FA1-1—FA1-3,FA2-1—FA2-3,FA3-1—FA3-3
    36 FA1-3—FA1-5,FA2-3—FA2-5,FA3-3—FA3-5
    45 FA1-1—FA1-5,FA2-1—FA2-5,FA3-1—FA3-5
    86 FA1-5—FA2-5,FA2-5—FA3-5,FA3-5—FA1-5
    下载: 导出CSV

    表  2  SMART-1台阵台站间距和相应的台站对

    Table  2.   Station spacing and station pairs of SMART-1 array

    台站间距d/m台站对
    104 I03—I04,I04—I05,I05—I06,I06—I07
    200 C00—I03,C00—I06,C00—I09,C00—I12
    282 I03—I06,I06—I09,I09—I12
    400 I01—I07,I03—I09,I06—I12
    517 M03—M04,M05—M06
    800 I03—M03,I05—M05,I06—M06
    下载: 导出CSV
  • [1] 丁海平, 罗翼, 饶威波等, 2018. 截止频率的取值对地震动空间相干函数统计结果的影响. 地震学报, 40(5): 664—672

    Ding H. P. , Luo Y. , Rao W. B. , et al. , 2018. The influence of cut-off frequency on the statistical results of spatial coherency function of seismic ground motion. Acta Seismologica Sinica, 40(5): 664—672. (in Chinese)
    [2] 丁海平, 朱越, 李昕, 2020. 基于AR模型的相干函数有效频段范围的确定. 地震工程与工程振动, 40(1): 30—38

    Ding H. P. , Zhu Y. , Li X. , 2020. Determination of effective frequency range for coherency function based on autoregressive model. Earthquake Engineering and Engineering Dynamics, 40(1): 30—38. (in Chinese)
    [3] 李英民, 吴哲骞, 陈辉国, 2013. 地震动的空间变化特性分析与修正相干模型. 振动与冲击, 32(2): 164—170 doi: 10.3969/j.issn.1000-3835.2013.02.032

    Li Y. M. , Wu Z. Q. , Chen H. G. , 2013. Analysis and modeling for characteristics of spatially varying ground motion. Journal of Vibration and Shock, 32(2): 164—170. (in Chinese) doi: 10.3969/j.issn.1000-3835.2013.02.032
    [4] 刘先明, 叶继红, 李爱群, 2004. 竖向地震动场的空间相干函数模型. 工程力学, 21(2): 140—144 doi: 10.3969/j.issn.1000-4750.2004.02.024

    Liu X. M. , Ye J. H. , Li A. Q. , 2004. Space coherency function model of vertical ground motion. Engineering Mechanics, 21(2): 140—144. (in Chinese) doi: 10.3969/j.issn.1000-4750.2004.02.024
    [5] 马俊玲, 罗翼, 丁海平, 2018. 不同地震波波形对相干系数影响的对比分析. 自然灾害学报, 27(5): 20—26

    Ma J. L. , Luo Y. , Ding H. P. , 2018. Comparison of influence of different seismic wave types on coherence coefficient. Journal of Natural Disasters, 27(5): 20—26. (in Chinese)
    [6] Abrahamson N. A. , Bolt B. A. , Darragh R. B. , et al. , 1987. The SMART I accelerograph array (1980-1987): a review. Earthquake Spectra, 3(2): 263—287. doi: 10.1193/1.1585428
    [7] Abrahamson N. A. , Schneider J. F. , Stepp J. C. , 1991. Empirical spatial coherency functions for application to soil-structure interaction analyses. Earthquake Spectra, 7(1): 1—27. doi: 10.1193/1.1585610
    [8] Darragh R. B., 1988. Analysis of near-source waves: separation of wave types using strong motion array recordings. Earthquake Engineering Research Center, Report No. UCB/EERC-88/08, Berkeley: University of California.
    [9] Ding H. P. , Trifunac M. D. , Todorovska M. I. , et al. , 2015. Coherence of dispersed synthetic strong earthquake ground motion at small separation distances. Soil Dynamics and Earthquake Engineering, 70: 1—10. doi: 10.1016/j.soildyn.2014.11.010
    [10] Hao H., 1989. Effects of spatial variation of ground motions on large multiply-supported structures. Report No. UCB/EERC-89/06, Berkeley: University of California.
    [11] Hao H. , 1993. Arch responses to correlated multiple excitations. Earthquake Engineering & Structural Dynamics, 22(5): 389—404.
    [12] Harichandran R. S. , Vanmarcke E. H. , 1986. Stochastic variation of earthquake ground motion in space and time. Journal of Engineering Mechanics, 112(2): 154—174. doi: 10.1061/(ASCE)0733-9399(1986)112:2(154)
    [13] Imtiaz A., 2015. Seismic wave field, spatial variability and coherency of ground motion over short distances: near source and alluvial valley effects. French: Université Grenoble Alpes.
    [14] Liao S. T., 2006. Physical characterization of seismic ground motion spatial variation and conditional simulation for performance-based design. Philadelphia: Drexel University.
    [15] Loh C. H. , Lin S. G. , 1990. Directionality and simulation in spatial variation of seismic waves. Engineering Structures, 12(2): 134—143. doi: 10.1016/0141-0296(90)90019-O
    [16] Riepl J. , Oliveira C. S. , Bard P. Y. , 1997. Spatial coherence of seismic wave fields across an alluvial valley (weak motion). Journal of Seismology, 1(3): 253—268. doi: 10.1023/A:1009725604616
    [17] Schneider J. F., Stepp J. C., Abrahamson N. A. 1992. The spatial variation of earthquake ground motion and effects of local site condition. Proceedings, Tenth World Conference on Earthquake Engineering. A. A. Balkema, Rotterdam. 967—972
    [18] Todorovska M. I. , Trifunac M. D. , Ding H. P. , et al. , 2015. Coherency of dispersed synthetic earthquake ground motion at small separation distances: dependence on site conditions. Soil Dynamics and Earthquake Engineering, 79: 253—264. doi: 10.1016/j.soildyn.2015.08.004
    [19] Toksöz M. N. , Dainty A. M. , Charrette III E. E. , 1991. Spatial variation of ground motion due to lateral heterogeneity. Structural Safety, 10(1—3): 53—77. doi: 10.1016/0167-4730(91)90006-U
    [20] Zerva A. , Zhang O. , 1997. Correlation patterns in characteristics of spatially variable seismic ground motions. Earthquake Engineering & Structural Dynamics, 26(1): 19—39.
    [21] Zerva A. , 2009. Spatial variation of seismic ground motions. Boca Raton: CRC Press.
    [22] Zerva A. , Stephenson W. R. , 2011. Stochastic characteristics of seismic excitations at a non-uniform (rock and soil) site. Soil Dynamics and Earthquake Engineering, 31(9): 1261—1284. doi: 10.1016/j.soildyn.2011.05.006
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  50
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-23
  • 刊出日期:  2021-09-30

目录

    /

    返回文章
    返回