Preliminary Study on the Spatial Coherency of Surface Wave
-
摘要: 本文选取台湾LSST、SMART-1台阵地震记录,分别计算不同间距S波和面波相干系数,采用Loh提出的相干函数模型对计算结果进行参数拟合。研究结果表明,当台站间距
$ d < \text{50}\;{\rm{m}} $ 时,面波和S波相干系数基本相同;当台站间距$d = \text{500}\;{\rm{m}}$ 时,面波相干系数小于S波相干系数,且随着台站间距的增大,二者的差别逐渐增大;当台站间距$ d > \text{500}\;{\rm{m}}$ 时,面波空间相干性几乎不存在,可不考虑。本文给出的面波相干函数模型参数可作为大型盆地中的长大结构抗震分析时合成地震动场的参考。Abstract: In this paper, seismic records of Taiwan LSST array and SMART-1 array were selected to calculate the S-wave and surface wave coherence coefficients at different station distances. And then the coherence function model proposed by Loh was used to fit the calculation results. After comparison and analysis, we found that when the distance d < 50 m, the coherency coefficients of surface wave and S-waves are basically the same; when the distance d = 50 m , the coherency coefficients of surface wave is smaller than that of S-wave, and as the distance increases, the differences gradually increase. When the distance d > 500 m, the spatial coherency of the surface wave hardly exists, so no further consideration is needed. Finally, the surface wave coherency model parameters were given in this paper, which can be used as a reference for the synthetic ground motion field in the seismic analysis for long and large structures in large basins.-
Key words:
- S-wave /
- Surface wave /
- Spatial coherency /
- SMART-1 array /
- LSST array
-
表 1 LSST台阵台站间距和相应的台站对
Table 1. Station spacing and station pairs of LSST array
台站间距d/m 台站对 3 FA1-1—FA1-2,FA2-1—FA2-2,FA3-1—FA3-2 6 FA1-2—FA1-3,FA1-3—FA1-4,FA2-2—FA2-3,
FA3-2—FA3-3,FA3-3—FA3- 49 FA1-1—FA1-3,FA2-1—FA2-3,FA3-1—FA3-3 36 FA1-3—FA1-5,FA2-3—FA2-5,FA3-3—FA3-5 45 FA1-1—FA1-5,FA2-1—FA2-5,FA3-1—FA3-5 86 FA1-5—FA2-5,FA2-5—FA3-5,FA3-5—FA1-5 表 2 SMART-1台阵台站间距和相应的台站对
Table 2. Station spacing and station pairs of SMART-1 array
台站间距d/m 台站对 104 I03—I04,I04—I05,I05—I06,I06—I07 200 C00—I03,C00—I06,C00—I09,C00—I12 282 I03—I06,I06—I09,I09—I12 400 I01—I07,I03—I09,I06—I12 517 M03—M04,M05—M06 800 I03—M03,I05—M05,I06—M06 -
[1] 丁海平, 罗翼, 饶威波等, 2018. 截止频率的取值对地震动空间相干函数统计结果的影响. 地震学报, 40(5): 664—672Ding H. P. , Luo Y. , Rao W. B. , et al. , 2018. The influence of cut-off frequency on the statistical results of spatial coherency function of seismic ground motion. Acta Seismologica Sinica, 40(5): 664—672. (in Chinese) [2] 丁海平, 朱越, 李昕, 2020. 基于AR模型的相干函数有效频段范围的确定. 地震工程与工程振动, 40(1): 30—38Ding H. P. , Zhu Y. , Li X. , 2020. Determination of effective frequency range for coherency function based on autoregressive model. Earthquake Engineering and Engineering Dynamics, 40(1): 30—38. (in Chinese) [3] 李英民, 吴哲骞, 陈辉国, 2013. 地震动的空间变化特性分析与修正相干模型. 振动与冲击, 32(2): 164—170 doi: 10.3969/j.issn.1000-3835.2013.02.032Li Y. M. , Wu Z. Q. , Chen H. G. , 2013. Analysis and modeling for characteristics of spatially varying ground motion. Journal of Vibration and Shock, 32(2): 164—170. (in Chinese) doi: 10.3969/j.issn.1000-3835.2013.02.032 [4] 刘先明, 叶继红, 李爱群, 2004. 竖向地震动场的空间相干函数模型. 工程力学, 21(2): 140—144 doi: 10.3969/j.issn.1000-4750.2004.02.024Liu X. M. , Ye J. H. , Li A. Q. , 2004. Space coherency function model of vertical ground motion. Engineering Mechanics, 21(2): 140—144. (in Chinese) doi: 10.3969/j.issn.1000-4750.2004.02.024 [5] 马俊玲, 罗翼, 丁海平, 2018. 不同地震波波形对相干系数影响的对比分析. 自然灾害学报, 27(5): 20—26Ma J. L. , Luo Y. , Ding H. P. , 2018. Comparison of influence of different seismic wave types on coherence coefficient. Journal of Natural Disasters, 27(5): 20—26. (in Chinese) [6] Abrahamson N. A. , Bolt B. A. , Darragh R. B. , et al. , 1987. The SMART I accelerograph array (1980-1987): a review. Earthquake Spectra, 3(2): 263—287. doi: 10.1193/1.1585428 [7] Abrahamson N. A. , Schneider J. F. , Stepp J. C. , 1991. Empirical spatial coherency functions for application to soil-structure interaction analyses. Earthquake Spectra, 7(1): 1—27. doi: 10.1193/1.1585610 [8] Darragh R. B., 1988. Analysis of near-source waves: separation of wave types using strong motion array recordings. Earthquake Engineering Research Center, Report No. UCB/EERC-88/08, Berkeley: University of California. [9] Ding H. P. , Trifunac M. D. , Todorovska M. I. , et al. , 2015. Coherence of dispersed synthetic strong earthquake ground motion at small separation distances. Soil Dynamics and Earthquake Engineering, 70: 1—10. doi: 10.1016/j.soildyn.2014.11.010 [10] Hao H., 1989. Effects of spatial variation of ground motions on large multiply-supported structures. Report No. UCB/EERC-89/06, Berkeley: University of California. [11] Hao H. , 1993. Arch responses to correlated multiple excitations. Earthquake Engineering & Structural Dynamics, 22(5): 389—404. [12] Harichandran R. S. , Vanmarcke E. H. , 1986. Stochastic variation of earthquake ground motion in space and time. Journal of Engineering Mechanics, 112(2): 154—174. doi: 10.1061/(ASCE)0733-9399(1986)112:2(154) [13] Imtiaz A., 2015. Seismic wave field, spatial variability and coherency of ground motion over short distances: near source and alluvial valley effects. French: Université Grenoble Alpes. [14] Liao S. T., 2006. Physical characterization of seismic ground motion spatial variation and conditional simulation for performance-based design. Philadelphia: Drexel University. [15] Loh C. H. , Lin S. G. , 1990. Directionality and simulation in spatial variation of seismic waves. Engineering Structures, 12(2): 134—143. doi: 10.1016/0141-0296(90)90019-O [16] Riepl J. , Oliveira C. S. , Bard P. Y. , 1997. Spatial coherence of seismic wave fields across an alluvial valley (weak motion). Journal of Seismology, 1(3): 253—268. doi: 10.1023/A:1009725604616 [17] Schneider J. F., Stepp J. C., Abrahamson N. A. 1992. The spatial variation of earthquake ground motion and effects of local site condition. Proceedings, Tenth World Conference on Earthquake Engineering. A. A. Balkema, Rotterdam. 967—972 [18] Todorovska M. I. , Trifunac M. D. , Ding H. P. , et al. , 2015. Coherency of dispersed synthetic earthquake ground motion at small separation distances: dependence on site conditions. Soil Dynamics and Earthquake Engineering, 79: 253—264. doi: 10.1016/j.soildyn.2015.08.004 [19] Toksöz M. N. , Dainty A. M. , Charrette III E. E. , 1991. Spatial variation of ground motion due to lateral heterogeneity. Structural Safety, 10(1—3): 53—77. doi: 10.1016/0167-4730(91)90006-U [20] Zerva A. , Zhang O. , 1997. Correlation patterns in characteristics of spatially variable seismic ground motions. Earthquake Engineering & Structural Dynamics, 26(1): 19—39. [21] Zerva A. , 2009. Spatial variation of seismic ground motions. Boca Raton: CRC Press. [22] Zerva A. , Stephenson W. R. , 2011. Stochastic characteristics of seismic excitations at a non-uniform (rock and soil) site. Soil Dynamics and Earthquake Engineering, 31(9): 1261—1284. doi: 10.1016/j.soildyn.2011.05.006