• ISSN 1673-5722
  • CN 11-5429/P

2021年5月21日云南漾濞6.4级地震灾害损失快速评估结果分析

任静 张方浩 李志强 陈经纶 李晓丽 于晨 谭专条 陈雅慧 黄帅堂 姚琪

吴家熠, 林均岐, 刘金龙. 汶川地震道路破坏机理浅析[J]. 震灾防御技术, 2020, 15(3): 526-536. doi: 10.11899/zzfy20200306
引用本文: 任静,张方浩,李志强,陈经纶,李晓丽,于晨,谭专条,陈雅慧,黄帅堂,姚琪,2021. 2021年5月21日云南漾濞6.4级地震灾害损失快速评估结果分析. 震灾防御技术,16(3):454−466. doi:10.11899/zzfy20210304. doi: 10.11899/zzfy20210304
Wu Jiayi, Lin Junqi, Liu Jinlong. Analysis of Road Destruction Mechanism of Wenchuan Earthquake[J]. Technology for Earthquake Disaster Prevention, 2020, 15(3): 526-536. doi: 10.11899/zzfy20200306
Citation: Ren Jing, Zhang HaoFang, Li Zhiqiang, Chen Jinglun, Li Xiaoli, Yu Chen, Tan Zhuantiao, Chen Yahui, Huang Shuaitang, Yao Qi. May 21, 2021, Yangbi, Yunnan MS 6.4 Analysis of the Results of Rapid Assessment of Earthquake Disaster Losses[J]. Technology for Earthquake Disaster Prevention, 2021, 16(3): 454-466. doi: 10.11899/zzfy20210304

2021年5月21日云南漾濞6.4级地震灾害损失快速评估结果分析

doi: 10.11899/zzfy20210304
基金项目: 国家重点研发计划(2018YFE0109700);地震动力学国家重点实验室(LED2019B08);中国地震台网中心青年基金(QNJJ-202105)
详细信息
    作者简介:

    任静,女,生于1987年。工程师。主要从事地震工程和地震应急方面的研究。E-mail:renjing19870824h@163.com

May 21, 2021, Yangbi, Yunnan MS 6.4 Analysis of the Results of Rapid Assessment of Earthquake Disaster Losses

  • 摘要: 本文针对2021年5月21日云南漾濞6.4级地震,选取不同的地震烈度衰减关系模型,对各模型地震影响场评估结果与发布的地震烈度图进行对比分析,并对地震影响范围不确定性进行研究。选取多种死亡人数评估模型,分别计算各模型在不同地震影响场下的死亡人数、人口分布数量,探讨各地震影响场模型下的人口分布特征及影响人员死亡的主要因素。通过对比分析可知,导致此次地震灾害损失评估结果与真实地震现场结果不同的主要原因是地震影响场分布、人口分布、房屋建筑抗震能力偏差、地形地貌、次生灾害等多种因素不同。研究结果表明,有效提高地震灾害损失快速评估精确性的途径为提高地震影响场评估精度,提高人口分布、房屋建筑等数据空间分布评估精度,后期专家检验等。
  • 道路是生命线系统的重要组成部分,道路系统不仅对国民经济发展至关重要,也是灾区震后得以及时救援和恢复重建的保障(刘金龙等,2013)。至2019年,中国公路总里程居世界第一,共484.7万km,其中高速公路达14.3万km,汶川地震灾区范围内公路总里程达62671km(刘爱文等,2008),受损公路总里程达31412km,近一半的公路受损,仅道路破坏带来的直接经济损失高达612亿。对地震引起的道路破坏机理进行分析,了解道路震害影响因素,从而针对特定的地质条件修复和加固道路,对提高道路抗震水平和震后恢复具有重要的现实意义(王伟等,2014顾全等,2017李帅等,2017)。

    周德培等(2010)结合工程震害实例,根据震害现象分析各类边坡和相应支挡结构的震害机制;陈乐生(2012a)通过对汶川地震公路震害的调查统计,得到了地基条件、地基类型、所在位置、道路、断裂带等因素与路基破坏的关系;胡衡(2018)总结了路基、支挡结构和边坡震害,并给出了发生道路震害的主要因素。目前,关于道路震害分析的研究大都仅给出导致道路震害的主要因素。

    本文选取道路构件(挡土墙、边坡和路基路面)典型破坏现象,分析和总结相应的震害特点,并将道路构件震害按破坏形式进一步将挡土墙分为墙身破坏和倾斜破坏两类;根据边坡坡度和岩石类型,将其分为崩塌型滑坡和塌陷滑移型滑坡两类;路基发生永久变形的三种情况,包括路基差异沉降、路堤边坡失稳、断层破裂引起的差异位移。总结每类破坏形式的常见工程和自然条件,讨论地震动导致道路构件破坏的原因,可加深对公路系统震损特征的了解,有利于提高道路抗震能力和震后恢复能力。

    挡土墙指用于支承路基填土或山坡土体、防止填土或土体变形失稳的构造物。地震直接作用引起的挡土墙破坏包括垮塌、墙身剪断、整体倾斜、倾覆、开裂变形,挡土墙震害现象如图 1-7中华人民共和国交通运输部等,2009陈乐生,2012a),地震的间接破坏由次生灾害(如滑坡、土体崩塌等)导致挡土墙被掩埋或砸坏,所以可认为间接破坏的挡土墙是由边坡破坏引起的。汶川地震中挡土墙震害现象包括垮塌、墙身剪断、整体倾斜、倾覆、开裂变形、挡土墙被掩埋或砸坏等。

    图 1  挡土墙倾斜
    Figure 1.  Retaining wall inclined
    图 2  挡土墙中部剪切破坏
    Figure 2.  The middle of the retaining wall was clipped
    图 3  挡土墙开裂
    Figure 3.  Retaining wall cracked
    图 4  浆砌挡土墙鼓胀裂缝
    Figure 4.  Bulging cracks in mortar retaining wall
    图 5  挡土墙倾斜
    Figure 5.  Retaining wall inclined
    图 6  挡土墙外倾
    Figure 6.  Retaining wall inclined
    图 7  路基滑移挡土墙垮塌
    Figure 7.  The subgrade slip lead to retaining wall collapsed

    汶川地震中,烈度为Ⅵ-Ⅺ度的调查地区存在395处挡土墙破坏(陈乐生,2012a),直接破坏的震害数存在364处,占总震害数的92.2%,间接破坏的震害数仅占总震害数的7.8%。在直接破坏的挡土墙中,垮塌、墙身剪断、开裂变形破坏存在291处;73处为挡土墙倾斜破坏,所以按挡土墙墙身结构是否破坏分为挡土墙因荷载过大导致承载力不足而产生的墙身结构破坏和挡土墙整体倾斜或倾覆。

    挡土墙垮塌、中部剪断、开裂和鼓胀裂缝均使墙身结构发生了破坏。不同砌筑方式挡土墙破坏数量调查结果显示,汶川地震调查的405处挡土墙震害中,发生破坏的浆砌挡土墙占80%,发生破坏的混凝土挡土墙占17%,发生破坏的干砌挡土墙占2%,发生破坏的其他类型挡土墙占1%。干砌挡土墙在汶川地震中普遍发生了破坏,仅部分浆砌挡土墙基本完好,可知干砌和浆砌挡土墙是挡土墙墙身破坏的主要类型。根据各地震烈度下挡土墙破坏数量统计结果(图 8),可知随着地震烈度的增大,挡土墙破坏数量呈增多的趋势,且破坏主要集中于高烈度区,Ⅷ度区挡土墙破坏数量少于Ⅶ度区,Ⅷ度区挡土墙数量少,且多为混凝土挡土墙,这说明混凝土挡土墙抗震性能较浆砌和石砌挡土墙好。

    图 8  地震烈度下挡土墙破坏数量
    Figure 8.  Damage quantity of retaining wall at different intensities

    对浆砌和石砌挡土墙抗震性能进行分析,由于挡土墙墙身结构破坏是由挡土墙结构构件承受的应力过大引起的,如果重力式混凝土挡土墙结构设计恰当,对于静态荷载承载力计算,一般取荷载系数为1.7,因此对于一般强度的地震动,挡土墙不会发生墙身结构破坏,除非挡土墙内部存在缺陷(如截面不足、施工缝不良和缺乏加强内部支撑)。以浆砌、石砌施工方法修筑的挡土墙,在石块间的砂浆位置易形成软弱区,整体性较差,是墙身破坏的主要原因,山区挡土墙施工质量较差也是墙身易破坏的原因。

    综上可知,在地震的反复作用下,挡土墙在结构缺陷部位形成裂缝,对于浆砌挡土墙,存在多处软弱部位,易发生墙面大面积开裂、鼓胀和隆起。随着地震动强度的增大,混凝土挡土墙裂缝处的抗剪切力不足抵抗裂缝上部的土压力,直接使挡土墙被剪断,而浆砌、干砌挡土墙因砂浆材料的全面屈服整体垮塌。

    挡土墙发生倾斜破坏时墙身整体结构较好,破坏特征为顶部位移过大,整体失稳。调查结果显示(陈乐生,2012a),挡土墙倾斜震害发生在岩石地基上的仅占22.4%,发生在土质地基上的高达58.4%,在119处路肩墙破坏结果中,挡土墙未在岩质地基上发生过度倾斜或倾覆破坏。由此可知,相比岩石地基,在土质地基上挡土墙更易发生破坏。考虑土质地基承载力较低,地震发生后挡土墙墙趾位置处的土压力增大,土质地基易发生变形,因此导致土质地基上的挡土墙更易发生滑移和倾斜破坏。

    挡土墙试验证明(杨长卫等,2015),随着地震强度的增大,挡土墙背后土压力分布不均匀,土压力强度基本与加速度成正比,从整体土压力分布规律来看,加速度越大,土压力分布越接近三角形。这可能是因为挡土墙上部约束少,更易产生位移,而挡土墙下部被土体约束,位移小,上部产生位移后,下部将受到更大的土压力。对于高烈度区的地震动峰值加速度,当挡土墙正面墙趾处土压力不足时,挡土墙在墙背主动土压力作用下发生滑移;当挡土墙正面墙趾处土压力足够时,导致墙体内、墙趾和墙踵处弯矩显著增加,发生倾斜破坏。墙身高度对挡土墙破坏的影响见表 1,由长度占比可知,随着高度的增加,挡土墙越易发生破坏(图 4),这说明地震作用在挡土墙背后填土上时,挡土墙越高,地震惯性力的放大效应越明显,转动力矩越大。对于结构完好的挡土墙,随着地震强度的增大,挡土墙墙身越高,其上部位移越易积累,因而导致挡土墙发生倾斜甚至倾覆破坏。

    表 1  G213都映高速挡土墙破坏情况
    Table 1.  The damage situation of retaining wall on highway G213 from Dujiangyan to Yingxiu
    挡土墙墙身高度/m 总长度/m 破坏长度/m 破坏长度占比/%
    <6 3784.4 1131.5 0.299
    6-8 3217.9 1030.0 0.320
    8-10 1259.4 537.6 0.427
    >10 488.2 229.0 0.469
    下载: 导出CSV 
    | 显示表格

    汶川地震中,由边坡破坏造成多处交通堵塞,地震诱发滑坡和路堤失稳已引起公路系统大规模瘫痪,这种破坏不仅造成严重的直接经济损失(赵纪生等,2008),且阻塞道路,冲击和掩埋车辆,滑坡滚落的岩石将路基路面和挡土墙砸坏,对震后抢修造成了极大困难。汶川地震造成的典型边坡破坏现象如图 9-13所示(徐锡伟,2009)。

    图 9  边坡崩塌掩埋公路
    Figure 9.  The slope collapsed to bury the highway
    图 10  落石砸坏路基
    Figure 10.  The falling stone damaged the roadbed
    图 11  崩塌滑坡和落石
    Figure 11.  Collapse landslides and falling rocks
    图 12  边坡崩塌掩埋公路
    Figure 12.  The slope collapsed and buried the road
    图 13  塌陷滑移掩埋公路
    Figure 13.  Subsidence slippage buried highway

    对发生破坏的边坡岩土类型进行调查,结果见表 2,由表 2可知岩质更易发生边坡震害。边坡坡度与震害数量的关系如图 14所示,由图 14可知,随着坡度的增加,边坡损坏数量显著增加,在坡度>45°的陡坡上,边坡震害较集中。边坡震害现象表明边坡地形结构与边坡破坏规模具有很大关系。综上分析,边坡岩土类型、边坡坡度、地形结构等因素对汶川地震边坡震害的影响较大,根据不同震害现象,按边坡震害形成模式分为崩塌型滑坡和塌陷滑移型滑坡。

    表 2  边坡岩土类型与震害数量
    Table 2.  Types of slope rock and quantity of earthquake damage
    边坡岩土类型 震害数量/个 占比/%
    岩质 251 47.0
    土质 154 28.8
    上层土质下层岩质 129 24.2
    下载: 导出CSV 
    | 显示表格
    图 14  边坡坡度与震害数量关系
    Figure 14.  Distribution of seismic damage and slope gradient

    崩塌型滑坡指岩石土体在自重或地震等其他作用下从陡峭山坡急速下落,有时伴随着破碎岩体沿边坡大规模下落现象。由图 9-12所示边坡情况可知,此类边坡破坏规模普遍较大,属浅层岩石破坏,发生在边坡较高的位置,且发生在坡度>45°的陡坡上。较坚硬的岩石易形成较大的陡坡,这些陡坡岩石属于硬性岩石。地震发生后,边坡上的岩石沿边坡下落至地面,形成堆积阻塞,掩埋道路(图 10图 12)。玄武岩和花岗岩等发育良好的岩石,部分岩体甚至重心外伸,且风化程度严重、岩石间胶结强度弱,在地震作用下,因风化或雨水侵蚀存在薄弱部位的岩体进一步开裂,从陡坡滑落或坠落,较大的岩体形成落石(图 11)。

    调查发现,震中附近约150m高的水坝记录到峰值加速度高达1.5g-2.0g,而相同地点水坝底地震动峰值加速度较小,高差悬殊、斜坡山脊等地形对地震动的放大效应更明显。此外,考虑震中区较长时间的强震动作用,分析认为强震动作用时间长也是震中区边坡发生严重破坏的原因。综上可知,地震对边坡具有以下影响:①边坡地带对地震动有放大效应,尤其是陡峭的斜坡;②强震作用时间越长,坡体破裂越严重。边坡崩塌与上盘效应也有密切关系,北川映秀段公路位于汶川地震断层上盘,以花岗岩等硬性岩石为主,岩石受风化影响严重,边坡岩体发生了大规模松动和崩塌。

    综上所述,边坡发生大规模崩塌滑坡现象的原因是发育良好的硬性岩石在严重的风化影响下,岩层层理间的胶结强度降低,产生微小裂缝,尤其是竖向层理的边坡岩体裂缝较明显。地形高差悬殊、坡度较陡的边坡对地震动强度有放大效应,遭遇强震时,地震波在已开裂的岩层中不断发生折射和反射,加大了破裂面上的拉应力,且岩层间产生的位移随之累积。这会导致结构面岩层强度进一步削弱,最终超过岩层破裂强度。上述破坏过程不仅发生在破裂界面上,岩石内部也受上述因素影响,导致岩体从震裂到松弛,抗剪能力较弱的岩层首先发生断裂,破裂的岩石从陡坡上被挤出,下落过程较迅速。

    塌陷滑移型滑坡指斜坡上岩石土体在重力或地震等其他作用下,沿着滑动面移动形成的滑坡。土体塌陷(陈乐生,2012b)是发生在冲积或海洋洪积平原天然沉积层内的破坏,常出现在溪流、渠道沿岸等地势较陡峭的边坡上,有时也出现在有浅层或上层滞水面的中等陡峭边坡上。图 13所示的岩土塌陷滑移,滑动岩体基本保持为整体,调查发现,发生此类破坏的边坡主要集中于坡度为30°-45°相对陡峭的边坡上,因坡度较崩塌型滑坡破坏的边坡小,移动速度相对较慢。通过滑动岩体基本保持了其相对位置,可知滑动面在地震发生前即为相对软弱的部位。

    在调查的179个塌陷边坡中,塌陷破坏主要集中于Ⅸ-Ⅺ度区,约占破坏总数的80%,可知塌陷滑移型滑坡受地震强度的影响较大。通过岩石性质调查,可知地震诱发的土体塌陷多发生于土质边坡上,这些岩石多为弱胶结沉积岩,且岩体为软弱和软硬互层。部分边坡破坏发生在河道或沼泽沉积物等软土地基上,这些地基压实度不足,且高路堤人工填土较松散,所以压实性及地基条件对地震边坡破坏的影响较大。

    由以上震害特点,对塌陷滑移型滑坡进行理论计算分析,为简化计算将边坡转化为二维平面,将地震动作为拟静力处理,水平和竖直两个方向的地震动影响相互独立,认为水平地震动系数kH用0.1、0.25和0.4分别表示小震(7度)、中震(8度)和大震(9度),相应的竖向地震动系数kV用0.05、0.125和0.2表示。如图 15所示,α表示滑动体滑动面与边坡坡面之间的角度;β表示水平向与边坡坡面的角度;FN表示对滑动体的支持力;FS表示平行于滑动面的力。

    图 15  滑动体受力示意图
    Figure 15.  Schematic diagram of sliding body force

    对滑动体受力分析,建立沿滑动面平行和垂直方向建立平衡方程。

    $$\left\{\begin{array}{l}F_{\mathrm{N}}=\left[\left(1-k_{\mathrm{V}}\right) \cos \alpha-k_{\mathrm{H}} \sin \alpha\right] \times W \\ F_{\mathrm{S}}=\left[\left(1-k_{\mathrm{V}}\right) \sin \alpha+k_{\mathrm{H}} \sin \alpha\right] \times W\end{array}\right. $$ (1)

    式中,为方便计算将滑动体简化为三角形,W为滑动体自重,用W=γ(tan α-H2/tan β)表示;γ为滑动体重度。

    沿滑动面向上的力由土体的粘聚力和摩擦力提供,表示为:

    $$F_{\mathrm{S}}=\left(c l+F_{\mathrm{N}} \tan \varphi\right) $$ (2)

    FS为土体表面具有的抗力;cl为破坏面粘聚力总和;FN为土体摩擦力;φ为滑动面上的土体内摩擦角。

    当滑动体处于临界状态(即有滑动趋势的岩体在粘聚力以及静摩擦作用下恰好保持静止),FS用公式(3)表示为:

    $$F_{\mathrm{S}}=\left(c l+F_{\mathrm{N}} \tan \varphi\right)=\left[\left(1-0.5 k_{\mathrm{H}}\right) \sin \alpha+k_{\mathrm{H}} \sin \alpha\right] \times \gamma\left(H^{2} / \tan \alpha-H^{2} / \tan \beta\right) $$ (3)

    通常将竖向地震动系数用水平地震动系数乘以相应的系数表示,即kV=ξkH,最终可以

    得出:

    $$\begin{aligned} k_{\mathrm{H}}=&\left[\frac{2 c}{\gamma H} \sin \beta+(\cos \alpha \tan \varphi-\sin \alpha) \times \sin (\beta-\alpha)\right]/ \\ &\{[(\cos \alpha+\sin \alpha \tan \varphi)-\xi(\sin \alpha-\cos \alpha \tan \varphi)] \times \sin (\beta-\alpha)\} \end{aligned} $$ (4)

    式(4)为边坡将要发生滑移时的临界条件,改变边坡坡度、岩土的性质与地震动强度可能会打破平衡条件,当右侧值大于左侧值时,边坡会发生破坏。

    综上分析,塌陷滑移型滑坡发生破坏时,软弱或软硬互层岩土边坡在重力作用及雨水等因素的影响下,产生相对薄弱层,有滑动趋势的岩体在接触面抗剪切力及静摩擦力作用下保持静止;当地震动强度超过某临界值时,薄弱层抗剪切力和摩擦力不足以承受滑动体重力分量及加速度,滑动体沿薄弱层被拉裂,薄弱层产生贯穿的裂缝,滑动体整体沿裂缝向下滑移。滑坡规模与边坡坡度有关,在相对陡峭的边坡上,随着坡度的增加,滑坡规模越来越大。

    随着大地震的发生,道路路面往往发生破坏。地层变形或地层破坏是导致道路破坏的直接原因(李杰,2012),由于强烈的地震动,地基局部隆起或面层断裂时有发生,但相比其他形式的破坏,此类震害现象较少。汶川地震造成的路基路面常见震害现象如图 16-20所示(中华人民共和国交通运输部等,2009)。

    图 16  路基沉陷
    Figure 16.  Subgrade subsidence
    图 17  路基沉降错台
    Figure 17.  Subgrade settlement
    图 18  路基失稳
    Figure 18.  Subgrade instability
    图 19  映秀镇附近路基纵向开裂
    Figure 19.  Longitudinal cracking of the roadbed near Yingxiu town
    图 20  断层形成的陡坎
    Figure 20.  Slope formed by fault scarp

    地震导致的面层破坏不仅是铺砌表面的路面破坏,多由路基永久性地层变形造成。稳定且不易受地震诱发永久变形的路基支撑上的面层,在地震作用下较少破坏。在地基或路堤特别脆弱的位置,路基发生严重破坏,无承载能力的面层也会随之破坏。基于汶川地震出现的路基路面破坏现象,根据路基产生永久变形的原因,将路基破坏分为以下情况:

    (1)压实度不足导致路基差异沉降

    图 16所示的路基差异沉降中,裂缝延伸至边坡一侧,路基类型为半填半挖型。在汶川地震调查的区段中,Ⅵ-Ⅺ度区内路基路面震害共579处,Ⅸ-Ⅺ度区震害较集中,震害受损程度较大,共498处,占总震害数量的86%,地震强度对路基的影响较大。路基破坏情况如图 21图 22所示,由图可知半填半挖是发生破坏的主要路基类型,土质是发生破坏的主要路基地质条件。

    图 21  不同路基类型下路基破坏情况
    Figure 21.  Subgrade damage under subgrade type
    图 22  不同地质条件下路基破坏情况
    Figure 22.  Subgrade damage under geological conditions

    考虑半填半挖路基人工填筑部分及土质地基压实度不足且承载力较低,易发生塑性变形。由此认为,路基震害除与地震烈度有关外,下卧层存在易受地震诱发地层位移影响的压实不良的路堤材料或压实度存在明显差异的路基也易产生差异沉降破坏。综上分析,在地震动的反复作用下,路基根据压实度不同发生不同的塑性形变,压实度不足的路基沉降较大,导致上层路面随之破坏,如地震发生后路桥结合处因压实度明显不同造成错台现象和半填半挖路基局部沉降错台现象。

    (2)路堤边坡失稳引起路基破坏

    图 17图 18所示为路堤边坡失稳引起的面层竖向位移震害现象,由图 18可知,路基在临路堤边坡一侧大范围塌陷,失去了支撑作用的路面不足以保证车辆安全通行。汶川地震中,仅受地震作用而破坏的路基较少,道路严重破坏多由浅层路基边坡塌陷所致。调查显示土质路基和半填半挖形式路基震损情况最多,且多为下边坡一侧临空路基下滑,导致路基发生严重毁坏,沿河公路出现此类破坏较多。分析认为半填半挖路基存在天然软弱结合面,沿河路堤边坡在河水的冲刷作用下易造成底部空虚,这是路堤边坡失稳的主要原因。

    综上可知,此类破坏类似边坡塌陷滑移破坏,不合理填筑的过陡路堤及土质路基在雨水等外因影响下底部产生较小的破裂层或天然存在薄弱层,在强烈的地震作用下,破裂层或薄弱层处裂缝进一步开展,抗剪强度不足时,路堤边坡发生整体塌滑,进而失稳,造成路基竖向剪切破坏,有时会造成路基大范围整体滑移。小范围的路堤边坡塌陷往往仅使面层发生位移和错动,大规模路堤边坡塌陷或深层塌陷,均会造成大规模路基竖向断裂,有时路基和路面沉降量高达几米。

    (3)断层破裂引起差异位移

    考虑断层破裂附近的道路破坏严重,且常出现较大裂缝(图 19),有时甚至出现高差几米的陡坎(图 20)。断层走向与公路走向的夹角统计结果显示,随着平行至垂直的变化,路基破坏数量逐渐减少,当与断层走向平行时,破坏集中,且出现多处隆起、错台破坏。根据断层作用方式的不同,将断层破裂对附近路基的影响分为以下方面:①对于走滑断层,断层的相对位移直接导致断层延伸至地表处,产生较大裂缝甚至高差悬殊的陡坎。此外,根据错台发生的不同位置可知主断层破裂会导致附近次生断层的出现。利用有限元模型对断层导致的公路破坏情况进行模拟(邓龙胜等,2009),结果表明断层导致路基路面的破坏模式包括张拉、剪切、弯压和复合破坏,主要以张拉破坏为主。②断层不仅对断裂带产生影响,走滑断层上下盘效应的影响也不能忽视。断层上盘效应对上断层PGA有明显的增大作用(王栋,2010范优铭等,2017),距断层裂缝越近,对道路上盘效应的影响越大。北川至映秀镇公路位于断层上盘,与下盘距断层相同距离的道路相比,震害较严重。由此可知,对于斜向走滑断层,主断层面两侧的相对移动导致道路路基被地震裂缝拉断,与此同时,主断层断裂导致次生断层破裂,随着断层的相对移动,路基随之产生位移,最终出现路基隆起、陡坎等破坏。对于水平方向的断层,上部路基路面整体随着地震产生位移,但不产生相对位移,因此水平方向的断层造成路堤破裂破坏的情况少。断层上盘效应使位于断层上盘的路基承受更大的地震动峰值加速度,相当于增大了地震动强度,从而使压实度不足的路基更易发生不均匀沉降,使土质路基边坡易发生失稳塌陷和整体滑移破坏。

    本文针对汶川地震震损道路进行机理分析,通过总结道路构件(挡土墙、边坡和路基路面)破坏类型,对破坏形式进行合理分类,给出每类破坏形式常见的自然地质条件和工程因素,得出以下结论:

    (1)对挡土墙墙身破坏和倾斜倾覆破坏进行分析,对于浆砌和石砌挡土墙结构,忽略施工质量和材料自身等因素,易在石块间的砂浆位置产生软弱区,这是挡土墙开裂、墙身剪断甚至整体垮塌的主要原因。混凝土挡土墙一般不会发生结构自身破坏,除非挡土墙内部存在缺陷,包括截面不足、施工缝不良和缺乏内部支撑。挡土墙倾斜破坏常发生在土质地基中,因地震动作用于挡土墙背后回填土上,导致主动土压力增大,墙趾在基础中被约束,且土质地基易变形,挡土墙越高墙趾处的转动力矩越大,挡土墙上部易产生位移,导致挡土墙倾斜,整体失稳。

    (2)根据不同边坡岩石类型和坡度产生的破坏现象,分为以下破坏模式:①崩塌型滑坡,发生大规模崩塌型滑坡现象的边坡具有硬质岩石、地形高差悬殊、坡度较陡、风化严重、处于断层上盘位置的特点。在地震作用下,抗剪能力较弱的岩层发生断裂,破裂的岩石从陡坡上被挤出。②塌陷滑移型滑坡,常见的人工填土中,发生大部分破坏的为填土松散,且压实度较差,或被填在河道、沼泽沉积物等软土地基上,在地震作用下,坡度为30°-45°的陡坡上中软岩石边坡在较深层沿软弱面断开,滑动体内部保持相对位置,整体下滑。

    (3)路基产生永久变形的情况包括:①路基差异沉降,土体在地震作用下,压实度不同的位置发生差异塑性变形;②路堤边坡失稳,类似边坡塌陷滑移破坏形式,在强烈的地震作用下,路基破裂层或薄弱层处裂缝进一步开展,路堤边坡发生整体塌滑,进而失稳,造成路基竖向剪切破坏;③断层造成路基永久变形,斜向走滑断层两侧有相对移动,导致道路路堤被地震裂缝拉断,且断层上盘效应明显增大地震动强度。对于道路路基路面,虽可通过分析进行抗震设计,可在震前有减小或消除大多数面层破坏的改造或加固方法,但震后修复价格往往令人无法接受,且震前改造或加固仅对面层结构具有可行性,所以建议采用震后面层破坏快速修理的被动策略,而不是在预防路基破坏上加大投入的主动策略。

  • 图  1  基于真实地震现场影响场评估结果(模型a)和5种评估模型的地震影响场分布图

    Figure  1.  Distribution map of seismic influence field based on on-site assessment results (model a) and five assessment models

    图  2  震级-烈度圈面积分布

    Figure  2.  The relationship between the magnitude of the earthquake cases selected in this article and the area of each classified intensity zone

    图  3  云南漾濞6.4级地震各影响场灾区人口分布

    Figure  3.  Population distribution in disaster area of the M6.4 Yangbi earthquake

    图  4  云南漾濞6.4级地震各影响场Ⅵ度区以上区域总人口数

    Figure  4.  The total population of the area above the VI degree of each affected fields of the M6.4 Yangbi earthquake

    表  1  地震现场影响场评估结果与5种地震影响场评估模型

    Table  1.   On-site evaluation results and five types of earthquake-influenced field evaluation models

    模型模型名称模型来源
    a现场调查烈度图云南地震局官网
    b中国分区地震动衰减关系模型汪素云等(2000
    c中国西部分区地震烈度衰减关系模型肖亮等(2011
    d川滇及邻区中强地震烈度衰减关系模型孙继浩等(2011
    e川滇分区地震烈度衰减关系模型董曼等(2015
    f云南地区分区地震烈度衰减关系模型张方浩等(2016
    下载: 导出CSV

    表  2  地震现场影响场评估结果与5种影响场模型评估结果对比

    Table  2.   Comparison of the assessment results of the earthquake impact field between the earthquake site and the five assessment models

    模型最高
    烈度
    Ⅵ度区/kmⅦ度区/kmⅧ度区/kmⅥ度区
    面积/km²
    Ⅶ度区
    面积/km²
    Ⅷ度区
    面积/km²
    长轴长度短轴长度长轴长度短轴长度长轴长度短轴长度
    aⅧ度10676502819105 500930170
    bⅧ度11882512911564931 11236
    cⅧ度1197651291165 9141 10443
    dⅧ度156885829439 4671 30913
    eⅦ度935431163 522376
    fⅧ度11975563518125 4811 386166
    下载: 导出CSV

    表  3  西南地区人口密度分组

    Table  3.   Population density groups in southwest China

    人口密度$ \rho $/(人·km−2b0b1b2b3相关系数R2
    $ \rho < 60 $−23.3903.230−0.000 030−0.9800.965
    $ 60 \leqslant \rho < 150 $4.926−0.7620.000 3001.5590.980
    $ \rho > 150 $−10.4851.7630.000 006−0.2760.980
    下载: 导出CSV

    表  4  人员死亡评估模型计算结果对比

    Table  4.   Comparison of earthquake death assessment results of different impact field assessment models

    影响场
    模型
    最高
    烈度
    实际死亡
    人数/人
    刘金龙
    模型/人
    Page P. A.模型/人肖光先
    模型/人
    李雯
    模型/人
    陈棋福模型/人
    aⅧ度315102225
    bⅧ度315101325
    cⅧ度315102325
    dⅧ度315102825
    eⅦ度3125142
    fⅧ度315102525
    下载: 导出CSV

    表  5  各模型下的人口数量估算结果

    Table  5.   Population estimation results under each model

    模型最高
    烈度
    Ⅵ度区
    面积/km²
    Ⅶ度区
    面积/km²
    Ⅷ度区
    面积/km²
    Ⅵ度区
    人口数量/万人
    Ⅶ度区
    人口数量/万人
    Ⅷ度区
    人口数量/万人
    aⅧ度5 50093017085.793 84.265 13.432 2
    bⅧ度6 4931 1123699.000 08.500 00.170 0
    cⅧ度5 9141 1044389.000 08.500 00.200 0
    dⅧ度9 4671 30913130.000 09.600 00.040 0
    eⅦ度3 52237624.000 01.500 0
    fⅧ度5 4811 38616686.000 010.000 00.750 0
    下载: 导出CSV

    表  6  云南漾濞6.4级地震临震前震(M>3.0)目录

    Table  6.   Catalogue of imminent foreshocks (M>3.0) of the M6.4 Yangbi earthquake

    序号时间纬度经度震级/级震源深度/km震中位置
    12021-05-18 18:4926.65°N99.93°E3.28云南漾濞
    22021-05-18 20:5626.65°N99.93°E3.08云南漾濞
    32021-05-18 21:3925.65°N99.93°E4.08云南漾濞
    42021-05-19 3:2725.65°N99.92°E3.18云南漾濞
    52021-05-19 20:0525.66°N99.92°E4.48云南漾濞
    62021-05-19 21:1325.68°N99.89°E3.28云南漾濞
    72021-05-20 21:1325.67°N99.90°E3.211云南漾濞
    82021-05-21 20:5625.63°N99.93°E4.28云南漾濞
    92021-05-21 21:2125.63°N99.92°E5.610云南漾濞
    102021-05-21 21:2325.66°N99.97°E4.58云南漾濞
    下载: 导出CSV
  • [1] 白仙富, 聂高众, 戴雨芡等, 2021. 基于公里网格单元的地震滑坡人员死亡率评估模型——以2014年鲁甸Ms6.5地震为例. 地震研究, 44(1): 87—95

    Bai X. F. , Nie G. Z. , Dai Y. Q. , et al. , 2021. Modeling and testing earthquake-induced landslide casualty rate based on a grid in a kilometer scale: taking the 2014 Yunnan Ludian Ms6.5 earthquake as a case. Journal of Seismological Research, 44(1): 87—95. (in Chinese)
    [2] 陈文凯, 周中红, 张灿等, 2020. 新一代区域地震灾害快速评估系统设计与实现——以甘肃省为例. 地震工程学报, 42(6): 1683—1692 doi: 10.3969/j.issn.1000-0844.2020.06.1683

    Chen W. K. , Zhou Z. H. , Zhang C. , et al. , 2020. Design and implementation of a rapid assessment system for regional earthquake disasters in Gansu Province. China Earthquake Engineering Journal, 42(6): 1683—1692. (in Chinese) doi: 10.3969/j.issn.1000-0844.2020.06.1683
    [3] 丁香, 王晓青, 袁小祥等, 2009.2017年5月11日新疆塔什库尔干5.5级地震生命损失评估对比分析. 震灾防御技术, 14(2): 431—437

    Ding X., Wang X. Q., Yuan X. X., et al., 2019. Comparative analysis of life loss assessment caused by 2017 Ms 5.5 Taxkorgan Earthquake in Xinjiang, China. Technology for Earthquake Disaster Prevention, 14(2): 431—437. (in Chinese)
    [4] 董曼, 程佳, 魏文薪等, 2015. 川滇分区地震烈度衰减特征研究. 震灾防御技术, 10(S1): 760—769 doi: 10.11899/zzfy2015s107

    Dong M. , Cheng J. , Wei W. X. , et al. , 2015. Study on zonal characteristics of seismic intensity attenuation in Sichuan-Yunnan region. Technology for Earthquake Disaster Prevention, 10(S1): 760—769. (in Chinese) doi: 10.11899/zzfy2015s107
    [5] 国家地震局震灾应急救援司, 2015. 1966—1989年中国大陆地震灾害损失评估汇编. 北京: 地震出版社.
    [6] 李翔, 许正学, 王祥等, 2020. 广播电视地震预警技术. 广播电视网络, 27(1): 22—24.
    [7] 李雯, 陈文凯, 周中红等, 2019. 中国典型区域地震灾害生命易损性模型适用性评价. 北京师范大学学报(自然科学版), 55(2): 284—290

    Li W. , Chen W. K. , Zhou Z. H. , et al. , 2019. Assessing the applicability of life vulnerability models for earthquake disasters in typical regions of China. Journal of Beijing Normal University (Natural Science), 55(2): 284—290. (in Chinese)
    [8] 刘金龙, 林均岐, 2012. 基于震中烈度的地震人员死亡评估方法研究. 自然灾害学报, 21(5): 113—119

    Liu J. L. , Lin J. Q. , 2012. Study on assessment method for earthquake casualty based on epicentral intensity. Journal of Natural Disasters, 21(5): 113—119. (in Chinese)
    [9] 卢永坤, 张建国, 张方浩等, 2021.2021年云南漾濞Ms6.4地震烈度与震害特征. 地震研究, 44(3): 429—438

    Lu Y. K. , Zhang J. G. , Zhang F. H. , et al. , 2021. The characteristics of the seismic intensity and damage of the 2021 Yangbi, Yunnan MS6.4 earthquake. Journal of Seismological Research, 44(3): 429—438. (in Chinese)
    [10] 马玉宏, 谢礼立. 2000a. 地震人员死亡估算方法研究. 地震工程与工程振动, 20(4): 140—147

    Ma Y. H. , Xie L. L. , 2000a. Methodologies for assessment of earthquake casualty. Earthquake Engineering and Engineering Vibration, 20(4): 140—147. (in Chinese)
    [11] 马玉宏, 谢礼立, 2000b. 关于地震人员死亡因素的探讨. 自然灾害学报, 9(3): 84—90

    Ma Y. H. , Xie L. L. , 2000b. A study on factors influencing earthquake casualties. Journal of Natural Disasters, 9(3): 84—90. (in Chinese)
    [12] 亓凤娇, 苏鹤军, 陈文凯等, 2021. 地震灾害人员死亡评估模型对比——以甘肃省中强震为例. 华北地震科学, 39(1): 9—16, 22

    Qi F. J. , Su H. J. , Chen W. K. , et al. , 2021. Comparison of evaluation models of casualties in earthquake disaster—taking moderate and strong earthquakes in Gansu Province as examples. North China Earthquake Sciences, 39(1): 9—16, 22. (in Chinese)
    [13] 任静, 阿里木江•亚力昆, 李志强等, 2020.2020年1月19日新疆伽师6.4级地震灾害损失快速评估精确性分析. 震灾防御技术, 15(2): 349—358

    Ren J. , Alimujiang·Yalikun, Li Z. Q. , et al. , 2020. Contrastive analysis on the accuracy of rapid assessment of earthquake disaster losses by 2020 MS6.4 Jiashi earthquake in Xinjiang China. Technology for Earthquake Disaster Prevention, 15(2): 349—358. (in Chinese)
    [14] 孙继浩, 帅向华, 2011. 川滇及其邻区中强地震烈度衰减关系适用性研究. 地震工程与工程振动, 31(1): 11—18

    Sun J. H. , Shuai X. , H. , 2011. Study on moderate-strong seismic intensity attenuation relations in Sichuan-Yunnan and its adjacent areas. Earthquake Engineering and Engineering, 31(1): 11—18. (in Chinese)
    [15] 田丽莉, 2012. 地震灾害人员死亡影响因素分析及人员死亡估算公式. 北京: 首都经济贸易大学.
    [16] 汪素云, 俞言祥, 高阿甲等. 2000. 中国分区地震动衰减关系的确定. 中国地震, 16(2): 99—106

    Wang S. Y., Yu. Y. X., Gao A. J., et al., 2000. Development of attenuation relations for ground motion in China. Earthquake Research in China, 16(2): 99—106. (in Chinese)
    [17] 吴微微, 2013. 从汶川和芦山地震浅析四川地震次生地质灾害的特点及减灾对策. 震灾防御技术, 8(4): 434—439 doi: 10.3969/j.issn.1673-5722.2013.04.011

    Wu W. W. , 2013. Characteristics and countermeasures of geological hazards induced in Wenchuan and Lushan earthquakes, Sichuan province. Technology for Earthquake Disaster Prevention, 8(4): 434—439. (in Chinese) doi: 10.3969/j.issn.1673-5722.2013.04.011
    [18] 吴艳梅, 赵至柔, 李敏等, 2021. 基于IPTV的云南地震预警信息发布技术及在2021年云南漾濞MS6.4地震中的应用. 地震研究, 44(3): 499—506

    Wu Y. M. , Zhao Z. R. , Li M. , et al. , 2021. The Yunnan earthquake early warning system based on IPTV and its application in the 2021 Yangbi, Yunnan MS6.4 earthquake event. Journal of Seismological Research, 44(3): 499—506. (in Chinese)
    [19] 肖光先, 1991. 震后灾害损失快速评估. 灾害学, 6(4): 12—17

    Xiao G. X. , 1991. Rapid assessment of disaster losses in post-earthquake. Journal of Catastrophology, 6(4): 12—17. (in Chinese)
    [20] 肖亮, 俞言祥, 2011. 中国西部地区地震烈度衰减关系. 震灾防御技术, 6(4): 358—371 doi: 10.3969/j.issn.1673-5722.2011.04.002

    Xiao L. , Yu Y. X. , 2011. Earthquake intensity attenuation relationship in western China. Technology for Earthquake Disaster Prevention, 6(4): 358—371. (in Chinese) doi: 10.3969/j.issn.1673-5722.2011.04.002
    [21] 杨健强, 叶阳, 卢永坤等, 2021.2021年云南漾濞MS6.4地震房屋震害与烈度评定. 地震研究, 44(3): 439—445

    Yang J. Q. , Ye Y. , Lu Y. K. , et al. , 2021. Damage and intensity assessment of buildings in the 2021 Yangbi, Yunnan MS6.4 earthquake area. Journal of Seismological Research, 44(3): 439—445. (in Chinese)
    [22] 张方浩, 蒋飞蕊, 李永强等, 2016. 云南地区地震烈度评估模型研究. 中国地震, 32(3): 511—521 doi: 10.3969/j.issn.1001-4683.2016.03.008

    Zhang F. H. , Jiang F. R. , Li Y. Q. , et al. , 2016. Study of the evaluation model of the earthquake influence in Yunnan. Earthquake Research in China, 32(3): 511—521. (in Chinese) doi: 10.3969/j.issn.1001-4683.2016.03.008
    [23] 张莹, 郭红梅, 尹文刚等, 2017. 基于多因素的地震灾害人员死亡评估模型研究. 震灾防御技术, 12(4): 870—881 doi: 10.11899/zzfy20170415

    Zhang Y, Guo H. M. , Yin W. G. , et al. , 2017. Study of multiple factors-based earthquake disaster casualties evaluation model. Technology for Earthquake Disaster Prevention, 12(4): 870—881. (in Chinese) doi: 10.11899/zzfy20170415
    [24] 赵至柔, 吴艳梅, 李敏等, 2021. 云南地震预警信息发布平台设计及在2021年云南漾濞MS6.4地震中的应用. 地震研究, 44(3): 507—513

    Zhao Z. R. , Wu Y. M. , Li M. , et al. , 2021. Design of the Yunnan earthquake early warning information release platform and its application in the 2021 Yangbi, Yunnan MS6.4 earthquake. Journal of Seismological Research, 44(3): 507—513. (in Chinese)
    [25] 中国地震局监测预报司, 2001. 中国大陆地震灾害损失评估汇编(1996—2000). 北京: 地震出版社, 2001.
    [26] 中国地震局震灾应急救援司, 2010. 2001—2005年中国大陆地震灾害损失评估汇编. 北京: 地震出版社.
    [27] 中国地震局震灾应急救援司, 2015. 2006—2010年中国大陆地震灾害损失评估汇编. 北京: 地震出版社.
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  213
  • HTML全文浏览量:  127
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-30
  • 刊出日期:  2021-09-30

目录

/

返回文章
返回