Review and Suggestions on Natural Disaster Prevention for Nuclear Power Plants in China
-
摘要: 我国是目前世界在建核电机组最多的国家,总装机容量世界第三,是名副其实的核大国,核安全是国家安全的重要内容,被提到了前所未有的高度。同时,我国也是世界上自然灾害最严重的国家之一,包括核电厂在内的重大工程建设高度重视自然灾害防御设计。日本311地震海啸引起福岛核事故后,核电厂设计中增强了对超设计基准自然灾害的考虑。本文对核电厂防御自然灾害的必要性、核电厂设计中需考虑的自然灾害及国内外核电厂关于防御自然灾害存在的问题进行研究,提出我国核电厂防御自然灾害的建议。Abstract: At present, China is the country with the largest number of nuclear power plants(NPPs) under construction in the world, and its total installed capacity is the third in the world. Nuclear safety is an important part of national security and has been raised to an unprecedented height. Since the Fukushima nuclear accident caused by the 311 earthquake and tsunami in Japan, the ability of defense against natural disasters considered in the design of NPPs has received unprecedented attention. This paper focuses on the necessity of natural disaster prevention for NPPs, the natural disasters considered in the design of NPPs and the existing problems of natural disaster prevention at home and abroad, and then puts forward some suggestions on natural disaster prevention.
-
Key words:
- Nuclear power plant /
- Beyond design basis natural disaster /
- Disaster prevention /
- Design
-
表 1 安全壳结构设计考虑的内外部灾害荷载工况
Table 1. List of load cases considered structural design of containment
符号 荷载类型 符号 荷载类型 D 永久荷载 Ta 由包括T0的设计基准事故引起的温度作用用 L 活荷载 Ra 由包括R0的设计基准事故引起的管道和设备反力 G 由启动卸压阀或其他高能装置而引起的荷载 Rr 由设计基准事故引起的局部荷载 F 由施加预应力而产生的荷载 Ha 由于内部溢流而作用于安全壳的荷载 T0 在正常运行或停堆期间的温度作用 W 厂址基本风压 R0 在正常运行或停堆期间管道和设备的反力 E1 运行安全地震动产生的地震作用 Pv 由安全壳内部或外部压力变化引起的压力荷载 Wt 龙卷风荷载 Pt 安全壳进行整体性试验时的压力荷载 E2 极限安全地震动产生的地震作用 Tt 安全壳进行整体性试验期间的温度作用 A2 外部爆炸引起的冲击波荷载 Pa 由设计基准事故引起的压力荷载 A3 外部飞射物引起的荷载 A1 内部飞射物产生的撞击荷载 表 2 混凝土结构安全壳设计考虑的荷载组合
Table 2. List of load cases considered in structural Design of Containment
工况 荷载组合 组合编号 施加预应力前 1.4D+1.7L+1.7W (1) 正常运行+严重环境 D+1.3L+F+G+T0+1.5E1+R0+Pv (2) D+1.3L+F+G+T0+1.5W+R0+Pv (3) 正常运行+极端环境 D+L+F+G+T0+E+R0+Pv (4) D+L+F+G+T0+W+R0+Pv (5) 异常运行 D+L+F+G+1.5Pa+Ta+Ra (6) D+L+F+G+Pa+Ta+1.25Ra (7) D+L+F+1.25G+1.25Pa+Ta+Ra (8) 异常运行+严重环境 D+L+F+G+1.25Pa+Ta+1.25E1+Ra (9) D+L+F+G+1.25Pa+Ta+1.25W+Ra (10) D+L+F+G+T0+E1+Ha (11) D+L+F+G+T0+W+Ha (12) 异常运行+极端环境 D+L+F+G+Pa+Ta+E2+Ra+Rr (13) 异常运行+飞射物 D+L+F+G+Pa+Ta+E2+Ra+A1 (14) 正常运行+外部人为事件 D+L+F+G+T0+R0+Pv+A2 (15) D+L+F+G+T0+R0+Pv+A3 (16) -
[1] 柴国旱, 2015. 后福岛时代对我国核电安全理念及要求的重新审视与思考. 环境保护, 43(7): 21—24.Chai G. H., 2015. Reexamine the concept and requirement of nuclear safety in China. Environmental Protection, 43(7): 21—24. (in Chinese) [2] 陈金凤, 李忠诚, 董占发等, 2013. 百万千瓦级压水堆核电厂安全壳设计寿命60年结构分析评价. 工业建筑, (S1): 156—160.Chen J. F., Li Z. C., Dong Z. F., et al., 2013. Structural analysis and evaluation on 60A-lifetime of the containment for the pressurized water reactor station with 1000MWE class. Industrial Construction, (S1): 156—160. (in Chinese) [3] 国家核安全局, 1989. HAD 102/05—1989 与核电厂设计有关的外部人为事件. [4] 中华人民共和国住房和城乡建设部等, 2013. GB/T 50674—2013《核电厂工程气象技术规范》. 北京: 中国计划出版社.Ministry of Housing and Urban- rural Development of the People’s Republic of China, 2013. GB/T 50674—2013. Code of meteorology for nuclear power plant. [5] 国家核安全局, 1991a. HAD 101/10—1991 核电厂厂址选择的极端气象事件(不包括热带气旋). [6] 国家核安全局, 1990. HAD 101/09—1990 滨海核电厂厂址设计基准洪水的确定. [7] 国家核安全局, 1991b. HAF 101—1991 核电厂厂址选择安全规定. [8] 国家核安全局, 1994. HAD 101/01—1994 核电厂厂址选择中的地震问题. [9] 国家核安全局, 2006a. HAD 102/17—2006 核动力厂安全评价与验证. [10] 国家核安全局, 2006b. HAD 103/11—2006 核动力厂定期安全审查. [11] 国家核安全局, 2012. 福岛核事故后核电厂改进行动通用技术要求(试行). [12] 国家核安全局, 2016. HAF 102—2016 核动力厂设计安全规定. [13] 国家核安全局, 2019. HAD 102/02—2019 核动力厂抗震设计与鉴定. [14] 国家能源局, 2014. NB/T 20303—2014 压水堆核电厂预应力混凝土安全壳设计规范. 北京.China National Nuclear Industry Corporation, 2014. NB/T 20303—2014 Design requirements for prestressed concrete containments of pressure water reactor nuclear power plants. Beijing: Xinhua Publishing House. [15] 贺秋梅, 李小军, 张江伟等, 2014. 某高温气冷堆核电厂结构地震反应分析. 震灾防御技术, 9(3): 454—461. doi: 10.11899/zzfy20140312He Q. M., Li X. J., Zhang J. W., et al., 2014. Seismic response analysis of high temperature gas cooled reactor nuclear power plant. Technology for Earthquake Disaster Prevention, 9(3): 454—461. (in Chinese) doi: 10.11899/zzfy20140312 [16] 李亮, 潘蓉, 刘宇等, 2017. 新版HAF 102—2016《核动力厂设计安全规定》对核电厂混凝土结构设计影响的初步探讨. 工业建筑, 47(9): 7—9, 23.Li L., Pan R., Liu Y., et al., 2017. Preliminary study of nuclear power plant design safety regulations (HAF 102—2016) for concrete structures in nuclear power plants. Industrial Construction, 47(9): 7—9, 23. (in Chinese) [17] 潘华, 吴健, 2006. 新版IAEA安全导则《核电厂地震危险性评价》的分析与评述. 震灾防御技术, 1(2): 121—128. doi: 10.3969/j.issn.1673-5722.2006.02.005Pan H., Wu J., 2006. Analysis and discussions on the new IAEA safety guide “evaluation of seismic hazards for nuclear power plants”. Technology for Earthquake Disaster Prevention, 1(2): 121—128. (in Chinese) doi: 10.3969/j.issn.1673-5722.2006.02.005 [18] 潘华, 李金臣, 张志中, 2007. 2006年12月26日台湾恒春海外地震及其对核电厂的影响. 震灾防御技术, 2(1): 11—18. doi: 10.3969/j.issn.1673-5722.2007.01.002Pan H., Li J. C., Zhang Z. Z., 2007. Taiwan Hengchun offshore earthquake of December 26, 2006 and its effects on safety of NPPs. Technology for Earthquake Disaster Prevention, 2(1): 11—18. (in Chinese) doi: 10.3969/j.issn.1673-5722.2007.01.002 [19] 中华人民共和国住房和城乡建设部, 2019. GB/T 51390—2019 核电厂混凝土结构技术标准. 北京: 中国计划出版社.Ministry of Housing and Urban-rural Development of the People’s Republic of China, 2019. GB/T 51390—2019 Technical standard for concrete structure of nuclear power plants. Beijing: China Planning Press. [20] International Atomic Energy Agency, 2016. Considerations on the application of the IAEA safety requirements for the design of nuclear power plants, IAEA-TECDOC-1791[R]. Vienna: International Atomic Energy Agency.