• ISSN 1673-5722
  • CN 11-5429/P

基于遥感影像的建筑抗震能力分析

李姜 张合 刘志辉 许冲

陆吉赟, 梁师俊, 余刚群. 基于GIS平台的地震小区划成果数字化系统设计与实现[J]. 震灾防御技术, 2020, 15(1): 156-164. doi: 10.11899/zzfy20200115
引用本文: 李姜,张合,刘志辉,许冲,2021. 基于遥感影像的建筑抗震能力分析—以张家口万全区为例. 震灾防御技术,16(2):371−380. doi:10.11899/zzfy20210216. doi: 10.11899/zzfy20210216
Lu Jiyun, Liang Shijun, Yu Gangqun. Design and Implementation of Digital System of Seismic Microzoning Results Based on GIS Platform[J]. Technology for Earthquake Disaster Prevention, 2020, 15(1): 156-164. doi: 10.11899/zzfy20200115
Citation: Li Jiang, Zhang He, Liu Zhihui, Xu Chong. Analysis of Seismic Capacity of Buildings Based on Remote Sensing Image[J]. Technology for Earthquake Disaster Prevention, 2021, 16(2): 371-380. doi: 10.11899/zzfy20210216

基于遥感影像的建筑抗震能力分析以张家口万全区为例

doi: 10.11899/zzfy20210216
基金项目: 河北省地震动力学重点实验室开放基金(FZ202213);河北省科技厅重点研发计划(18275404D);中国地震局地震应急青年重点任务(CEA_EDEM-202003)
详细信息
    作者简介:

    李姜,女,生于1989年。工程师。主要从事地震应急、灾害风险分析工作。E-mail:lj_001.5@163.com

    通讯作者:

    张合,男,生于1979年。高级工程师。主要从事地震应急、灾害风险分析工作。E-mail:13673161551@163.com

Analysis of Seismic Capacity of Buildings Based on Remote Sensing ImageTaking Zhangjiakou Wanquan District as An Example

  • 摘要: 据震害统计,房屋抗震能力是影响灾害的主要因素,抗震能力一般由房屋抗震设防水平、结构类型、建造年代和房屋层数等因素决定,通过对房屋抗震能力的综合评定,以便采取更有针对性的地震灾害对策。本文通过遥感影像实现房屋基本信息的快速提取,提高房屋结构类型获取的便捷性,具有较高的准确度和可靠度,并利用抽样调查得到张家口万全区房屋建造年代和层数分布特点,结合当地抗震设防水平,建立房屋抗震能力指数指标体系,阐述房屋抗震能力现状,为地震灾害损失评估、风险普查、风险区划等工作提供参考。
  • 地震小区划是对特定区域范围内可能遭遇到的地震影响进行划分,包括设计地震动参数小区划和地震地质灾害小区划。相比地震区划,地震小区划工作更重视局部场地条件的影响,更为详细地考虑周围的地震地质环境,其成果可为抗震设计、土地利用规划、震害防御等提供更精确的资料(胡聿贤,1999)。

    地震小区划工作内容涉及地震活动性评价、地震构造评价、场地地震动分析等,工作量大,获取的数据也很丰富。传统地震小区划成果通常以文字报告、专题图件的形式提交,类型较单一,展示度较差,难以满足目前公共服务的需要。管理现有数据并充分利用数据推出更多服务型产品是目前包括地震小区划工作在内的地震工作信息化和现代化迫切需要。

    随着GIS技术的发展,国内很多研究者逐步将GIS技术引入地震小区划研究工作中(张苏平等,2003王庆满等,2011李程程等,2014),建立有关数据库和数据管理系统(田勤虎等,2011龚磊等,2015)。但已建系统多以数据查询、展示为主,缺少分析功能和实际产出服务。本文以嘉兴科技城地震小区划工作为基础,将基础数据与地理信息系统(GIS)相结合,形成集查询、分析于一体的地震小区划成果数字化系统,可为不同用户提供不同数据服务。

    研究区位于嘉兴科技城,行政区划属于嘉兴市南湖区,面积约30km2,是浙江省四大科技平台之一。现聚集了包括浙江清华长三角研究院、浙江中科院应用技术研究院在内的一批高端院所,还建有多个国际技术合作平台、工程中心和产学研基地,是嘉兴市乃至浙江省重要的创业创新平台。

    查询《中国地震动参数区划图》(GB 18306—2015)(中华人民共和国国家质量监督检验检疫总局等,2015)可知,嘉兴市大部分地区由原来的Ⅵ度设防提升为Ⅶ度设防,设防水准的提高将对区内建设工程抗震设防、国土利用规划、社会经济发展等提出更高的要求。嘉兴科技城现处于Ⅶ度设防区内,加之人才产业聚集、产值高,地震灾害风险大。在该区进行地震小区划工作,可为该区提供更精确的抗震设防和土地规划资料,有效降低地震灾害风险。

    根据相关规范要求,地震小区划工作内容包括地震地质及地震活动性资料的收集、场地钻探、场地土层反应分析等,涉及地质、地震、地球物理、工程勘察等多方面的数据,根据系统建设的需要归纳如下:

    (1) 地震地质及地震活动性数据

    研究区内地震地质及地震活动性专题图包括区域地震分布图、场地地震分布图、历史地震等震线分布图、区域构造图、区域断层分布图、近场构造图等,均为Mapinfo格式的矢量文件。

    (2) 场地地震工程地质条件勘察数据

    区划范围内布设60个钻孔,其中标准钻孔1个(孔深232.8m),地震钻孔29个(深度不小于105m),勘察孔30个(深度小于30m),钻探总进尺4204m,浅层人工地震探测测线共21534m。系统建设收集的数据包括60幅钻孔柱状图、18条工程地质剖面、5幅浅层人工地震探测解译图,其中钻孔资料均以柱状图的形式提供,格式为AUTO CAD矢量文件,钻孔的其他信息以Excel表格的形式提供;工程地质剖面图和地震探测测线数据为PDF文档和栅格图片;勘察报告以PDF文档的形式提供。

    场地内60个钻孔均进行了波速测试,钻孔代表性土层动三轴土样80件,收集的波速数据和动三轴数据以Excel表格的形式提供。

    (3) 地震动分析与参数区划数据

    根据土层地震动分析的需要,建立29个场地钻孔模型,数据格式为TXT文本。收集全球范围内天然地震记录1692条,人工合成地震波522条(每个钻孔3个超越概率各6条),以TXT文本的形式提供。

    地震小区划成果图件主要为地震动参数区化图,以Mapinfo矢量文件的形式提供。另外,还包括小区划报告的文本,以PDF文档的形式提供。

    地震小区划涉及钻孔、场地、强震记录、地震灾害等概念,其对象层次清晰,易于以面向对象的方式实现,形成地震小区划数字化系统。根据需求分析,首先将地震小区划数字化涉及的问题抽象成类,并建立类之间的消息机制及类之间的关系,即进行地震小区划数字化概念设计。

    根据概念模型抽象出类,相应的类关系如图 1所示,地震小区划数字化主要类有CSolid(工程地质三维实体类)、CDrillHoles(钻孔集合类)、CSoilLayers(土层集合类)、CGroundMotion(强震动观测记录类)、CEarthQuake(场地地震动类)等。CDrillHoles类由CDrillHole类组合形成,并通过CreateTIN方法实现CTins类,由CTins类实现CSolid类,利用CGroundMotion类中SelectEarthQuake方法筛选出符合地质条件的历史强震记录,导入CSolid类,进行地震动分析,计算场地地震动参数峰值加速度、特征周期,并绘制峰值加速度等值线图和特征周期等值线图,由此生成场地地震小区划成果。

    图 1  类关系图
    Figure 1.  Class diagram

    系统采用Access小型数据库实现场地基础地理信息数据、地震动数据、地震震陷数据、地震液化数据等的建库,结合GIS技术实现空间数据与属性数据的整合、矢量数据与栅格数据的整合、信息数据与分析数据的整合。数据库共包含9张数据表,分类如表 1所示。

    表 1  数据库汇总
    Table 1.  Database summary
    序号 表名 功能说明
    1 ZkInfo 钻孔基本信息
    2 ZkLayer 钻孔土层信息
    3 StLayer 标准层序土层信息
    4 ZkLique 钻孔砂土液化信息
    5 ZkClay 钻孔软土震陷信息
    6 ZkWave 钻孔土层剪切波速信息
    7 ZkBG 钻孔土层标贯信息
    8 ZkMx 钻孔动力分析模型信息
    9 ZkSeis 钻孔动参数区划信息表
    下载: 导出CSV 
    | 显示表格

    数据库逻辑设计如图 2所示。

    图 2  数据库逻辑关系图
    Figure 2.  Database logic diagram

    系统采用MapX作为GIS开发组件,数据库采用Access,在VB环境下完成开发,可运行于多个版本的windows操作系统中。

    系统功能分为资料查询、成果应用、专题研究三大模块,其中专题研究整合了资料查询、成果应用模块的所有功能,详细的功能设计如图 3所示,系统主界面(专题研究模块)如图 4所示,主要对资料查询、成果应用模块进行介绍。

    图 3  系统功能设计
    Figure 3.  System function design
    图 4  系统主界面(专题研究模块)
    Figure 4.  System main interface (thematic research module)

    该模块主要对地震小区划工作的基础资料及成果数据进行可视化展示,内容包括地震活动性、地震构造、场地勘察、地震区划等。由于部分功能展示的形式类似,对其中的部分功能进行介绍。

    (1) 地震活动性查询:可查询区域地震、场地地震、历史地震影响烈度及场地地震综合评价。按地震震级自动统计地震活动性情况,通过地点地图及数据表的方式查询当前地震发生日期、经度、纬度、震级、震源深度等相关信息,成果展示如图 5所示。

    图 5  地震活动性查询(场地地震)
    Figure 5.  Seismic activity query (site earthquakes)

    (2) 地震区划:对区内潜在震源区的划分情况及地震小区划成果进行查询,成果以可视化的形式展示,包括区划的范围、相关的地震动参数及标定的反应谱,成果展示如图 6所示。

    图 6  地震小区划查询
    Figure 6.  Seismic microzoning query

    (3) 钻孔快捷查询:可对区内所有勘察钻孔进行集中展示,包括钻孔柱状图、钻孔土层剪切波速、抗震类别判定、砂土液化和软土震陷情况判断等所有信息,成果展示如图 7所示。

    图 7  钻孔信息快捷查询
    Figure 7.  Quick query of borehole information

    该模块基于现有基础资料,通过建立分析模型对数据进行数字化分析,生成相应的成果数据。该模块主要包括虚拟勘察、场地分析及国土规划3个子模块,其中虚拟勘察模块包括虚拟钻孔、工程地质剖面、地层等值线等,场地分析模块包括砂土液化、软土震陷分析及场地抗震类别判定,国土规划模块包括断层分布及地震小区划。

    (1) 虚拟钻孔:采用delaunay三角网上的线性内插算法,根据坐标输入或地图点选获得示范区内任意位置钻孔(虚拟)的相关资料,包括钻孔柱状图、场地抗震类别判定、砂土液化和软土震陷分析、历史地震、地震动参数等。虚拟钻孔的柱状图以栅格图片或CAD矢量文件的形式导出,所有虚拟钻孔信息还可以Word文档的形式导出,内容包括场地土层信息、场地地震动参数、场地类别等,涵盖了地震工程大部分基础资料,可供相关单位参考使用,如图 8所示。

    图 8  虚拟钻孔分析
    Figure 8.  Analysis of virtual borehole

    (2) 工程地质剖面:根据连续的坐标输入或在底图上绘制剖面线生成研究区内相应的工程地质剖面图(见图 9),可将剖面图以栅格图片或CAD矢量文件的形式导出。

    图 9  任意位置的工程地质剖面图
    Figure 9.  Engineering geological section at any position

    (3) 地震地质灾害:包括场地内的砂土液化和软土震陷。根据部分钻孔试验参数,采用建规中的判别方法对场地内钻孔进行判定,给出其液化程度和震陷情况。

    (4) 地震动分析:根据点选的坐标位置,选择距离最近的地震钻孔数据,输入筛选要素,从天然地震时程库中选取符合要求的天然地震时程;根据人工合成的基岩地震动计算得到各超越概率下的场地地表地震动参数,成果展示如图 10所示。

    图 10  场地钻孔地震动分析
    Figure 10.  Ground motion analysis of site borehole

    通过对地震小区划数据的整理,基于GIS软件开发地震小区划成果数字化系统。在实现项目成果数据查询与可视化展示的同时,还可导出数字化分析成果。相比传统的地震小区划工作,该系统的成果更丰富,形式更多样,为地震工作服务能力的提升进行了尝试。同时,需指出的是,此次建立的系统仅为单机版,与实现公共服务仍存在一定差距,后续还需进行更多的研究,补充和完善相关功能,以期建立高效便捷的在线服务系统。

  • 图  1  万全区行政区划图

    Figure  1.  Administrative division map of Wanquan District

    图  2  万全区地貌分区图与调查点分布

    Figure  2.  Geomorphic zoning map and distribution of survey points in Wanquan District

    图  3  无人机拍摄赵家梁村影像图

    Figure  3.  Image of zhaojialiang village taken by UAV

    图  4  无人机拍摄房屋侧面照片

    Figure  4.  Side photos of houses taken by UAV

    图  5  影像处理流程

    Figure  5.  Flow chart of image processing technology

    图  6  赵家梁村房屋信息提取结果

    Figure  6.  Extraction results of house information in zhaojialiang Village

    图  7  22个调查点建筑物抗震能力指数对比图

    Figure  7.  Comparison of seismic capacity index of buildings in 22 survey points

    表  1  22个调查点房屋信息

    Table  1.   House area summary o for 22 survey points

    序号调查点砌体结构房屋
    面积/m2
    砖木结构
    房屋面积/m²
    土、木、石结构房屋
    面积/m2
    序号调查点砌体结构
    房屋面积/m2
    砖木结构
    房屋面积/m2
    土、木、石结构房屋
    面积/m2
    1 新河口村 17 181 40 492 14 168 12 上营房村 49 995 16 078 7 481
    2 代家房村 7 335 15 503 3 693 13 西柳林村 2 044 5 492 821
    3 西湾村 1 727 3 121 709 14 洗马林镇 263 798 98 653 54 821
    4 武家庄村 48 671 111 185 31 716 15 万全镇 36 337 13 895 3 686
    5 新开口村 70 999 44 171 13 381 16 沙家庄村 69 798 21 931 8 306
    6 望虎台村 7 107 7 934 3 042 17 陈家沟村 20 917 43 403 15 590
    7 刘虎庄村 15 150 39 950 13 182 18 高庙堡村 212 719 84 412 50 936
    8 板山村 19 045 8 172 9 802 19 羊窖沟村 48 847 44 772 9 339
    9 阳门堡村 124 920 130 124 42 232 20 岸庄屯村 84 151 109 636 21 021
    10 旧羊屯村 124 071 127 114 43 988 21 安家堡村 277 443 92 840 50 190
    11 吴家窑村 40 342 13 275 5 845 22 赵家梁村 55 479 21 807 19 234
    下载: 导出CSV

    表  2  A类房屋震害矩阵(%)

    Table  2.   Earthquake damage matrix of A type buildings(Unit:%)

    破坏等级地震烈度
    基本完好 32.00 16.50 7.00 2.50 0
    轻微破坏 26.50 18.50 12.00 8.50 1.50
    中等破坏 22.50 20.00 16.50 14.00 7.50
    严重破坏 16.50 26.00 27.00 25.00 18.50
    毁坏 2.50 19.00 37.50 50.00 72.50
    下载: 导出CSV

    表  3  B类房屋震害矩阵(%)

    Table  3.   Earthquake damage matrix of B type buildings(Unit:%)

    破坏等级地震烈度
    基本完好 47.35 26.85 11.53 7.45 1.98
    轻微破坏 27.09 21.01 15.94 10.36 4.48
    中等破坏 15.83 21.88 22.43 17.29 11.45
    严重破坏 7.84 20.84 29.90 25.97 17.28
    毁坏 1.89 9.42 20.20 38.93 64.81
    下载: 导出CSV

    表  4  C类房屋震害矩阵(%)

    Table  4.   Earthquake damage matrix of C type buildings(Unit:%)

    破坏等级地震烈度
    基本完好 56.11 42.49 25.59 13.47 2.85
    轻微破坏 27.76 23.75 21.43 16.76 7.30
    中等破坏 10.89 16.65 21.58 23.16 17.40
    严重破坏 4.29 12.38 20.36 22.15 24.86
    毁坏 0.96 4.73 11.04 24.46 47.59
    下载: 导出CSV

    表  5  D类房屋震害矩阵(%)

    Table  5.   Earthquake damage matrix of D type buildings(Unit:%)

    破坏等级地震烈度
    基本完好 69.29 67.24 53.28 33.65 10.96
    轻微破坏 24.91 21.71 23.33 23.41 16.14
    中等破坏 4.62 7.56 14.40 22.22 25.53
    严重破坏 1.06 2.80 6.67 13.67 26.27
    毁坏 0.12 0.69 2.32 7.05 21.10
    下载: 导出CSV

    表  6  建造年代修正参考值

    Table  6.   Reference value of building age correction

    建造年代1979年以前1980—1989年1990—1999年2000—2019年
    修正值0.7000.8000.9341.000
    下载: 导出CSV

    表  7  层数修正参考值

    Table  7.   Corrected reference value of layers

    层数平房2~6层7层以上
    修正值0.8220.8631.000
    下载: 导出CSV

    表  8  建筑物抗震能力等级划分

    Table  8.   Classification of seismic capacity of buildings

    建筑物抗震能力分级优良中等
    范围$ 0.8 \leqslant IL < 1$$ 0.6 \leqslant IL < 0.8$$ IL < 0.6$
    下载: 导出CSV

    表  9  22个调查点房屋抗震能力指数

    Table  9.   Seismic capacity index of 22 survey points

    调查点新河口村代家房村西湾村武家庄村新开口村望虎台村刘虎庄村板山村阳门堡村旧羊屯村吴家窑村
    结构类型A类房屋 0.1851 0.3616 0.1348 0.1590 0.7604 0.1640 0.1855 0.2562 0.3438 0.1460 0.0940
    B类房屋 0.5416 0.5368 0.6266 0.5574 0.1934 0.4278 0.5622 0.2136 0.5814 0.4219 0.2135
    C类房屋 0.2632 0.1016 0.2386 0.2694 0.0462 0.2543 0.2523 0.5302 0.0515 0.3496 0.5876
    D类房屋 0.0101 0 0 0.0142 0 0.1539 0 0 0.0233 0.0825 0.1049
    建造年代 1979年以前 0.1234 0.1163 0.1047 0.1211 0.1011 0.1798 0.1221 0.1246 0.3563 0.1452 0.1254
    1980—1989年 0.3164 0.3397 0.3451 0.3385 0.1384 0.3269 0.3199 0.3144 0.2364 0.3749 0.3154
    1990—1999年 0.3423 0.3543 0.2456 0.3521 0.5916 0.3164 0.3384 0.3287 0.2963 0.3465 0.3336
    2000—2019年 0.2179 0.1897 0.3046 0.1885 0.1689 0.1769 0.2196 0.2323 0.111 0.1334 0.2256
    层数 平房 0.9659 0.9975 0.9834 0.7489 0.9746 0.8461 0.9644 0.9784 0.8831 0.8313 0.7290
    3层以下楼房 0.0341 0.0025 0.0166 0.1746 0.0254 0.1539 0.0356 0.0216 0.1169 0.1569 0.1846
    4层以上楼房 0 0 0 0.0765 0 0 0 0 0 0 0
    调查点 上营房村 西柳林村 洗马林镇 万全镇 沙家庄村 陈家沟村 高庙堡村 羊窖沟村 岸庄屯村 安家堡村 赵家梁村
    结构类型 A类房屋 0.0952 0.0969 0.1287 0.0674 0.0809 0.1908 0.1447 0.0894 0.0956 0.1165 0.1834
    B类房屋 0.2046 0.6482 0.2316 0.2541 0.2136 0.5312 0.2398 0.4286 0.4986 0.2155 0.2080
    C类房屋 0.5966 0.2549 0.5236 0.5461 0.6189 0.2780 0.5123 0.4131 0.3264 0.5784 0.6086
    D类房屋 0.1036 0 0.1161 0.1324 0.0865 0 0.1032 0.0689 0.0794 0.0896 0
    建造年代 1979年以前 0.1033 0.1661 0.093 0.0454 0.0765 0.1215 0.0821 0.0965 0.1569 0.1023 0.1651
    1980—1989年 0.2985 0.3216 0.3469 0.2947 0.3621 0.3946 0.3416 0.3765 0.3263 0.2989 0.3547
    1990—1999年 0.3045 0.3611 0.3136 0.3399 0.3611 0.3108 0.3656 0.3248 0.3625 0.3516 0.2812
    2000—2019年 0.2937 0.1512 0.2465 0.3200 0.2003 0.1731 0.2107 0.2022 0.1543 0.2472 0.1990
    层数 平房 0.8558 0.9347 0.6725 0.6214 0.8764 0.9036 0.6652 0.8996 0.8088 0.7102 0.9658
    3层以下楼房 0.1442 0.0653 0.2036 0.2158 0.1236 0.0964 0.1879 0.1004 0.1123 0.1695 0.0342
    4层以上楼房 0 0 0.1239 0.1628 0 0 0.1469 0 0.0789 0.1203 0
    下载: 导出CSV

    表  10  万全区房屋抗震能力指数

    Table  10.   Seismic capacity index of buildings in Wanquan district

    结构类型A类其他房屋0.135 8
    B类旧式房屋0.380 7
    C类砌体房屋0.411 9
    D类砌体房屋0.062 2
    建造年代1979年以前0.118 6
    1980—1989年0.343 1
    1990—1999年0.332 8
    2000—2019年0.239 4
    层数平房0.827 5
    3层以下楼房0.123 7
    4层以上楼房0.048 8
    下载: 导出CSV
  • [1] 窦爱霞, 王晓青, 丁香等, 2012. 遥感震害快速定量评估方法及其在玉树地震中的应用. 灾害学, 27(3): 75—80. doi: 10.3969/j.issn.1000-811X.2012.03.016

    Dou A. X., Wang X. Q., Ding X., et al., 2012. Quantitative methods of rapid earthquake damage assessment using remote sensing and its application in Yushu earthquake. Journal of Catastrophology, 27(3): 75—80. (in Chinese) doi: 10.3969/j.issn.1000-811X.2012.03.016
    [2] 郭建兴, 张宇翔, 姬建中等, 2020. 利用居民地建筑物数据和高分遥感影像评估地震烈度的方法初探. 地震地质, 42(4): 968—980. doi: 10.3969/j.issn.0253-4967.2020.04.013

    Guo J. X., Zhang Y. X., Ji J. Z., et al., 2020. A preliminary study on the method of seismic intensity assessment based on residential building data and high resolution remote sensing images. Seismology and Geology, 42(4): 968—980. (in Chinese) doi: 10.3969/j.issn.0253-4967.2020.04.013
    [3] 胡勇, 张孝成, 马泽忠等, 2016. 无人机遥感影像中农村房屋信息快速提取. 国土资源遥感, 28(3): 96—101.

    Hu Y., Zhang X. C., Ma Z. Z., et al., 2016. Rural residential area extraction from UAV remote sensing imagery. Remote Sensing for Land Resources, 28(3): 96—101. (in Chinese)
    [4] 姜立新, 帅向华, 聂高众等, 2012. 地震应急指挥协同技术平台设计研究. 震灾防御技术, 7(3): 294—302. doi: 10.3969/j.issn.1673-5722.2012.03.008

    Jiang L. X., Shuai X. H., Nie G. Z., et al., 2012. Study on the design of earthquake emergency command collaboration technology platform. Technology for Earthquake Disaster Prevention, 7(3): 294—302. (in Chinese) doi: 10.3969/j.issn.1673-5722.2012.03.008
    [5] 李昌珑, 李宗超, 吕红山等, 2019. 基于三维图像模式识别的西藏东南部地震灾害损失风险评估. 地球物理学报, 62(1): 393—410. doi: 10.6038/cjg2019M0360

    Li C. L., Li Z. C., Lv H. S., et al., 2019. Seismic disaster loss risk assessment for southeastern Tibet based on 3D image pattern recognition. Chinese Journal of Geophysics, 62(1): 393—410. (in Chinese) doi: 10.6038/cjg2019M0360
    [6] 李皓, 张合, 吕国军, 2018. 基于遥感影像的建筑数据构建研究. 震灾防御技术, 13(1): 168—176. doi: 10.11899/zzfy20180115

    Li H., Zhang H., Lv G. J., 2018. Construction of building data based on remote sensing images. Technology for Earthquake Disaster Prevention, 13(1): 168—176. (in Chinese) doi: 10.11899/zzfy20180115
    [7] 李书进, 毛羚, 陶礼龙等, 2010. 湖北农村民居抗震性能调查与分析. 震灾防御技术, 5(1): 116—124. doi: 10.3969/j.issn.1673-5722.2010.01.014

    Li S. J., Mao L., Tao L. L., et al., 2010. Seismic performance investigation and analysis of rural buildings in Hubei province. Technology for Earthquake Disaster Prevention, 5(1): 116—124. (in Chinese) doi: 10.3969/j.issn.1673-5722.2010.01.014
    [8] 刘贾贾, 刘志辉, 刘龙等, 2019. 基于遥感影像的农村建筑物分类. 华北地震科学, 37(4): 65—72. doi: 10.3969/j.issn.1003-1375.2019.04.012

    Liu J. J., Liu Z. H., Liu L., et al., 2019. Classification of rural buildings in Zhangjiakou area based on remote sensing images. North China Earthquake Sciences, 37(4): 65—72. (in Chinese) doi: 10.3969/j.issn.1003-1375.2019.04.012
    [9] 刘贾贾, 刘志辉, 刘龙等, 2021. 基于遥感影像的城镇建筑物分类. 测绘与空间地理信息, 44(1): 130—133. doi: 10.3969/j.issn.1672-5867.2021.01.036

    Liu J. J., Liu Z. H., Liu L., et al., 2021. Classification of town buildings based on remote sensing images. Geomatics & Spatial Information Technology, 44(1): 130—133. (in Chinese) doi: 10.3969/j.issn.1672-5867.2021.01.036
    [10] 刘莉, 2009. 城市防震减灾能力标定及可接受风险研究. 哈尔滨: 中国地震局工程力学研究所.

    Liu L., 2009. Calibration capability of the urban seismic prevention and disaster mitigation & research on acceptable risk level. Harbin: Institute of Engineering Mechanics, CEA. (in Chinese)
    [11] 刘龙, 刘志辉, 刘晓丹等, 2019. 张北地区农村房屋抗震性能分析. 华北地震科学, 37(2): 82—88. doi: 10.3969/j.issn.1003-1375.2019.02.013

    Liu L., Liu Z. H., Liu X. D., et al., 2019. Analysis of the seismic performance of rural houses in the areas of Zhangbei. North China Earthquake Sciences, 37(2): 82—88. (in Chinese) doi: 10.3969/j.issn.1003-1375.2019.02.013
    [12] 马建, 常想德, 黄帅堂等, 2020. 无人机摄影技术在精河地震房屋震害定量评估中的应用. 震灾防御技术, 15(1): 208—215. doi: 10.11899/zzfy20200121

    Ma J., Chang X. D., Huang S. T., et al., 2020. Application of UAV photography technology in quantitative assessment of building damage of the Jinghe earthquake. Technology for Earthquake Disaster Prevention, 15(1): 208—215. (in Chinese) doi: 10.11899/zzfy20200121
    [13] 茅远哲, 曹筠, 高晨等, 2019. 京西北地区地应变观测与小震震源机制解一致性研究. 中国地震, 35(4): 709—717. doi: 10.3969/j.issn.1001-4683.2019.04.011

    Mao Y. Z., Cao J., Gao C., et al., 2019. Consistency of ground strain observation and source mechanism solution of small earthquakes in northwest Beijing. Earthquake Research in China, 35(4): 709—717. (in Chinese) doi: 10.3969/j.issn.1001-4683.2019.04.011
    [14] 聂高众, 陈建英, 李志强等, 2002. 地震应急基础数据库建设. 地震, 22(3): 105—112. doi: 10.3969/j.issn.1000-3274.2002.03.017

    Nie G. Z., Chen J. Y., Li Z. Q., et al., 2002. The construction of basic database for earthquake emergency response. Earthquake, 22(3): 105—112. (in Chinese) doi: 10.3969/j.issn.1000-3274.2002.03.017
    [15] 帅向华, 姜立新, 刘钦等, 2009. 地震应急指挥技术系统设计与实现. 测绘通报, (7): 38—41, 54.

    Shuai X. H., Jiang L. X., Liu Q., et al., 2009. Earthquake emergency command system: design and implementation. Bulletin of Surveying and Mapping, (7): 38—41, 54. (in Chinese)
    [16] 王晓青, 丁香, 2004. 基于GIS的地震现场灾害损失评估系统. 自然灾害学报, 13(1): 118—125. doi: 10.3969/j.issn.1004-4574.2004.01.019

    Wang X. Q., Ding X., 2004. Estimation system of disastrous losses in seismic site based on GIS. Journal of Natural Disasters, 13(1): 118—125. (in Chinese) doi: 10.3969/j.issn.1004-4574.2004.01.019
    [17] 谢礼立, 2006. 城市防震减灾能力的定义及评估方法. 地震工程与工程振动, 26(3): 1—10. doi: 10.3969/j.issn.1000-1301.2006.03.001

    Xie L. L., 2006. A method for evaluating cities' ability of reducing earthquake disasters. Earthquake Engineering and Engineering Vibration, 26(3): 1—10. (in Chinese) doi: 10.3969/j.issn.1000-1301.2006.03.001
    [18] 张风华, 谢礼立, 范立础, 2004. 城市防震减灾能力评估研究. 地震学报, 26(3): 318—329. doi: 10.3321/j.issn:0253-3782.2004.03.011

    Zhang F. H., Xie L. L., Fan L. C., 2004. Study on Evaluation of cities' ability reducing earthquake disasters. Acta Seismologica Sinica, 26(3): 318—329. (in Chinese) doi: 10.3321/j.issn:0253-3782.2004.03.011
    [19] 张肖, 齐玉妍, 云萌等, 2019. 基于分量钻孔应变资料分析测区构造应变变化. 地震, 39(4): 76—83.

    Zhang X., Qi Y. Y., Yun M., et al., 2019. Analysis on changes of the tectonic strain in survey area based on multi-component borehole straingauge. Earthquake, 39(4): 76—83. (in Chinese)
    [20] 赵春霞, 钱乐祥, 2004. 遥感影像监督分类与非监督分类的比较. 河南大学学报(自然科学版), 34(3): 90—93.

    Zhao C. X., Qian L. X., 2004. Comparative study of supervised and unsupervised classification in remote sensing image. Journal of Henan University (Natural Science), 34(3): 90—93. (in Chinese)
    [21] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2009. GB/T 24335—2009 建(构)筑物地震破坏等级划分. 北京: 中国标准出版社.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration, 2009. GB/T 24335—2009 Classification of earthquake damage to buildings and special structures. Beijing: Standards Press of China. (in Chinese)
    [22] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2011. GB/T 18208.4—2011 地震现场工作第4部分: 灾害直接损失评估. 北京: 中国标准出版社.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration, 2011. GB/T 18208.4—2011 Post-earthquake field works—Part 4: assessment of direct loss. Beijing: Standards Press of China. (in Chinese)
    [23] 中华人民共和国住房和城乡建设部, 2008. GB 50223—2008 建筑工程抗震设防分类标准. 北京: 中国建筑工业出版社.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, 2008. GB 50223—2008 Standard for classification of seismic protection of building constructions. Beijing: China Architecture & Building Press. (in Chinese)
    [24] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2010. GB 50011—2010 建筑抗震设计规范(附条文说明)(2016年版). 北京: 中国建筑工业出版社.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. 2010. GB 50011—2010 Code for seismic design of buildings. Beijing: China Architecture & Building Press. (in Chinese)
    [25] 周强, 邵峰, 孙柏涛, 2016. 江西村镇房屋抗震能力调查与分析. 地震工程与工程振动, 36(6): 188—197.

    Zhou Q., Shao F., Sun B. T., 2016. Investigation and analysis of seismic capacity of rural buildings in Jiangxi. Earthquake Engineering and Engineering Dynamics, 36(6): 188—197. (in Chinese)
  • 加载中
图(7) / 表(10)
计量
  • 文章访问数:  233
  • HTML全文浏览量:  80
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-15
  • 刊出日期:  2021-06-30

目录

/

返回文章
返回