• ISSN 1673-5722
  • CN 11-5429/P

地表/井下反应谱比值非线性统计特征与影响因素研究

丁毅 王玉石 王宁 张立宝

丁毅,王玉石,王宁,张立宝,2021. 地表/井下反应谱比值非线性统计特征与影响因素研究. 震灾防御技术,16(2):362−370. doi:10.11899/zzfy20210215. doi: 10.11899/zzfy20210215
引用本文: 丁毅,王玉石,王宁,张立宝,2021. 地表/井下反应谱比值非线性统计特征与影响因素研究. 震灾防御技术,16(2):362−370. doi:10.11899/zzfy20210215. doi: 10.11899/zzfy20210215
Ding Yi, Wang Yushi, Wang Ning, Zhang Libao. Study on Nonlinear Statistical Characteristics of Surface/Downhole Response Spectrum Ratio and Influencing Factors[J]. Technology for Earthquake Disaster Prevention, 2021, 16(2): 362-370. doi: 10.11899/zzfy20210215
Citation: Ding Yi, Wang Yushi, Wang Ning, Zhang Libao. Study on Nonlinear Statistical Characteristics of Surface/Downhole Response Spectrum Ratio and Influencing Factors[J]. Technology for Earthquake Disaster Prevention, 2021, 16(2): 362-370. doi: 10.11899/zzfy20210215

地表/井下反应谱比值非线性统计特征与影响因素研究

doi: 10.11899/zzfy20210215
基金项目: 国家重点研发计划(2019YFC1511004);国家自然科学基金重点项目(51639006,U1839202)
详细信息
    作者简介:

    丁毅,男,生于1996年。硕士研究生。主要从事强震动观测数据分析与应用研究。E-mail:dingyi18@mails.ucas.ac.cn

    通讯作者:

    王玉石,男,生于1982年。博士,副研究员,硕士生导师。主要从事地震动场地效应与强震动观测技术研究。E-mail:wangyushi1982@126.com

Study on Nonlinear Statistical Characteristics of Surface/Downhole Response Spectrum Ratio and Influencing Factors

  • 摘要: 浅地表软弱覆盖层对地震动的影响具有强非线性,但因观测记录样本量过小,难以通过参考谱比法等直接方法予以可靠分析。本文基于日本KiK-net台网136个竖向钻井台阵获取的141881组加速度记录的统计分析,研究了地表/井下反应谱比值随地震动强度变化的非线性变化规律与主要影响因素。利用变窗口尺度的滑动窗口平均法加强数据线性度,并确定了与地震动强度相关的台站最小记录样本量,统计结果表明地表/井下反应谱比值平台值随地震动强度变化的非线性衰减指数为−0.24~−0.08。利用套索(Lasso)算法统计回归发现,本研究12个场地特性表征参数中,30 m平均剪切波速($ {V}_{\mathrm{s}30} $)、场地卓越频率与地表/井下反应谱比值非线性衰减指数具有较好的正相关性;较弱强度地震动作用下地表/井下傅里叶谱比值峰值、地表/井下反应谱比值峰值与地表/井下反应谱比值非线性衰减指数具有较好的负相关性。
  • 图  1  本研究选取台阵的空间分布与场地类别划分

    Figure  1.  The spatial distribution and site types of the selected array in this paper

    图  2  本研究选取地震记录的震级、震中距和地面加速度峰值分布

    Figure  2.  The magnitude and epicentre distance along with the peak ground acceleration(PGA) of the selected recordings

    图  3  地表/井下反应谱比值曲线与标定结果

    Figure  3.  The ratio of surface/downhole response spectrum shifted to the long period and the calibration results under different groups of input ground motion intensity

    图  4  典型台阵(IBRH13)地表/井下反应谱比值平台值与地震动强度的相关性

    Figure  4.  The correlation between the surface/downhole response spectrum ratio and ground motion intensity of a typical array(IBRH13)

    图  5  分组滑动平均法窗口长度选取方法与分布情况

    Figure  5.  The window length selection method and distribution of the grouping moving average method

    图  6  所选台阵在各分组区间内的地震事件个数与台阵筛选

    Figure  6.  The number of seismic eventsand array selection of the selected array in each grouping interval

    图  7  典型台阵归一化地表/井下反应谱比值平台值一元线性回归结果

    Figure  7.  Linear regression of the normalized surface/downhole response spectrum ratio platform value of a typical array

    图  8  相关性前4的场地条件表征参数与地表/井下反应谱比值平台值非线性衰减指数的关系

    Figure  8.  Correlation of the first four site parameters and the nonlinear attenuation index of the surface/downhole response spectrum ratio platform value

    表  1  不同地震动强度分组下的最小可信样本量

    Table  1.   Minimum reliable sample size for different ground motion intensity groups

    组别123456789101112
    分组标准/cm·s−20.178~
    0.562
    0.316~
    1.000
    0.562~
    1.780
    1.000~
    3.160
    1.780~
    5.620
    3.160~
    10.000
    5.620~
    17.800
    10.000~
    31.600
    17.800~
    56.200
    31.600~
    100.000
    56.200~
    177.800
    >100.000
    n0平均值/个3027252117141075321
    下载: 导出CSV

    表  2  场地条件表征参数

    Table  2.   The site characterization parameters selected in this paper

    参数含义定义参考文献
    $ {V}_{\rm{se}} $我国规范定义的等效剪切波速${V}_{\rm{se}}={d}_{0}/{\displaystyle\sum }_{i=1}^{n}\left({d}_{i}/{V}_{\mathrm{s}i}\right)$中华人民共和国住房和城乡建设部等,2010
    $ {V}_{\mathrm{S}30} $美国规范定义的平均剪切波速${V}_{\mathrm{S}30}=30/{\displaystyle\sum }_{i=1}^{n}\left({d}_{i}/{V}_{\mathrm{s}i}\right)$BSSC,2001(美国NEHRP规范)
    $ {B}_{30} $剪切波速剖面梯度$ {\mathrm{log}}_{10}{V}_{\mathrm{s}}\left(z\right)={B}_{Z\mathrm{m}\mathrm{a}\mathrm{x}}{\mathrm{log}}_{10}\left(z\right)+{A}_{Z\mathrm{m}\mathrm{a}\mathrm{x}}\pm {\sigma }_{Z\mathrm{m}\mathrm{a}\mathrm{x}} $Régnier等,2013
    $ {Z}_{0.5} $0.5 km/s覆盖层厚度剪切波速达0.5 km/s时的土层深度中华人民共和国住房和城乡建设部等,2010
    $ {Z}_{0.8} $0.8 km/s覆盖层厚度剪切波速达0.8 km/s时的土层深度Zhu等,2020
    $ {Z}_{1.0} $1.0 km/s覆盖层厚度剪切波速达1.0 km/s时的土层深度Zhu等,2020
    $ {V}_{\mathrm{s}\mathrm{a}\mathrm{v}} $整个土层沉积平均剪切波速地表到$ {V}_{\mathrm{s}}>800 $ m/s的“地震基岩”
    土层厚度内的走时平均剪切波速
    Pitilakis等,2013
    $ {f}_{\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{d}} $场地卓越频率弱震平均傅里叶谱放大系数峰值对应的频率Régnier等,2013
    $ {f}_{\mathrm{s}} $场地基本频率弱震HVSR曲线峰值对应的频率陈国兴等,2020
    $ {T}_{\mathrm{s}} $场地基本周期$ {f}_{\mathrm{s}} $的倒数陈国兴等,2020
    $ {A}_{\mathrm{s}} $弱震平均傅里叶谱放大系数峰值Régnier等,2013
    $ {A}_{\mathrm{s}\mathrm{r}} $弱震平均反应谱放大系数峰值
    下载: 导出CSV
  • [1] 陈国兴, 谢君斐, 张克绪, 1995. 土的动模量和阻尼比的经验估计. 地震工程与工程振动, 15(1): 73-84.

    Chen G. X., Xie J. F., Zhang K. X., 1995. The empirical evaluation of soil moduli and damping ratio for dynamic analysis. Earthquake Engineering and Engineering Vibration, 15(1): 73-84. (in Chinese)
    [2] 陈国兴, 丁杰发, 方怡等, 2020. 场地类别分类方案研究. 岩土力学, 41(11): 3509-3522, 3582.

    Chen G. X., Ding J. F., Fang Y., et al., 2020. Investigation of seismic site classification scheme. Rock and Soil Mechanics, 41(11): 3509-3522, 3582. (in Chinese)
    [3] 杜修力, 路德春, 2011. 土动力学与岩土地震工程研究进展. 岩土力学, 32(S2): 10-20.

    Du X. L., Lu D. C., 2011. Advances in soil dynamics and geotechnical earthquake engineering. Rock and Soil Mechanics, 32(S2): 10-20. (in Chinese)
    [4] 刘红帅, 2009. 基于小生境遗传算法的设计地震动反应谱标定方法. 岩土工程学报, 31(6): 975-979. doi: 10.3321/j.issn:1000-4548.2009.06.025

    Liu H. S., 2009. Calibrating method for seismic response spectra based on niche genetic algorithm. Chinese Journal of Geotechnical Engineering, 31(6): 975-979. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.06.025
    [5] 罗桂纯, 2016. 基于强震动观测的场地效应非线性特性研究. 国际地震动态, (1): 46-48.
    [6] 王海云, 谢礼立, 2010. 自贡市西山公园地形对地震动的影响. 地球物理学报, 53(7): 1631-1638. doi: 10.3969/j.issn.0001-5733.2010.07.014

    Wang H. Y., Xie L. L., 2010. Effects of topography on ground motion in the Xishan park, Zigong city. Chinese Journal of Geophysics, 53(7): 1631-1638. (in Chinese) doi: 10.3969/j.issn.0001-5733.2010.07.014
    [7] 王玉石, 李小军, 兰日清等, 2016. 强震动作用下土体非线性动力特征研究发展与展望. 震灾防御技术, 11(3): 480-492. doi: 10.11899/zzfy20160305

    Wang Y. S., Li X. J., Lan R. Q., et al., 2016. Development and prospect of study on soil nonlinear dynamic characteristics under strong-motion. Technology for Earthquake Disaster Prevention, 11(3): 480-492. (in Chinese) doi: 10.11899/zzfy20160305
    [8] 夏江, 陈清军, 2006. 基于遗传算法的设计地震反应谱标定方法. 力学季刊, 27(2): 317-322. doi: 10.3969/j.issn.0254-0053.2006.02.021

    Xia J., Chen Q. J., 2006. Calibrating method of seismic response spectrum based on genetic algorithm. Chinese Quarterly of Mechanics, 27(2): 317-322. (in Chinese) doi: 10.3969/j.issn.0254-0053.2006.02.021
    [9] 叶鹏, 2013. 四川地区强震动台站的场地反应研究. 哈尔滨: 中国地震局工程力学研究所.

    Ye P., 2013. Study on site responses of strong motion stations in Sichuan area. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese)
    [10] 袁晓铭, 孙锐, 孙静等, 2000. 常规土类动剪切模量比和阻尼比试验研究. 地震工程与工程振动, 20(4): 133-139. doi: 10.3969/j.issn.1000-1301.2000.04.020

    Yuan X. M., Sun R., Sun J., et al., 2000. Laboratory experimental study on dynamic shear modulus ratio and damping ratio of soils. Earthquake Engineering and Engineering Vibration, 20(4): 133-139. (in Chinese) doi: 10.3969/j.issn.1000-1301.2000.04.020
    [11] 张立宝, 2018. 基于钻井台阵数据的场地非线性效应研究. 北京: 中国地震局地球物理研究所.

    Zhang L. B., 2018. Study on nonlinearity of site effects on ground motion based on vertical borehole array data. Beijing: Institute of Geophysics, China Earthquake Administration. (in Chinese)
    [12] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2010. GB 50011—2010 建筑抗震设计规范(附条文说明)(2016年版). 北京: 中国建筑工业出版社.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. 2010. GB 50011—2010 Code for seismic design of buildings. Beijing: China Architecture & Building Press. (in Chinese)
    [13] Aguirre J., Irikura K., 1997. Nonlinearity, liquefaction, and velocity variation of soft soil layers in Port Island, Kobe, during the Hyogo-ken Nanbu earthquake. Bulletin of the Seismological Society of America, 87(5): 1244-1258.
    [14] Aki K., 1993. Local site effects on weak and strong ground motion. Tectonophysics, 218(1-3): 93-111. doi: 10.1016/0040-1951(93)90262-I
    [15] Andrews D. J., 1986. Objective determination of source parameters and similarity of earthquakes of different size. In: Das S., Boatwright J., Scholz C. H., eds., Earthquake Source Mechanics. Washington: American Geophysical Union, 259—267.
    [16] Beresnev I. A., Field E. H., Van Den Abeele K., et al., 1998. Magnitude of nonlinear sediment response in Los Angeles basin during the 1994 Northridge, California, earthquake. Bulletin of the Seismological Society of America, 88(4): 1079-1084.
    [17] Bernardie S., Foerster E., Modaressi H., 2006. Non-linear site response simulations in Chang-Hwa region during the 1999 Chi–Chi earthquake, Taiwan. Soil Dynamics and Earthquake Engineering, 26(11): 1038-1048. doi: 10.1016/j.soildyn.2006.02.004
    [18] Bonilla L. F., Steidl J. H., Gariel J. C., et al., 2002. Borehole response studies at the garner valley downhole array, Southern California. Bulletin of the Seismological Society of America, 92(8): 3165-3179. doi: 10.1785/0120010235
    [19] Bonilla L. F., Tsuda K., Pulido N., et al., 2011. Nonlinear site response evidence of K-NET and KiK-net records from the 2011 off the Pacific coast of Tohoku Earthquake. Earth, Planets and Space, 63(7): 785-789. doi: 10.5047/eps.2011.06.012
    [20] Borcherdt R. D., 1970. Effects of local geology on ground motion near San Francisco Bay. Bulletin of the Seismological Society of America, 60(1): 29-61.
    [21] Building Seismic Safety Council (BSSC), 2001. NEHRP recommended provisions for seismic regulations for new buildings and other structures, 2000 Edition. Washington, DC: Federal Emergency Management Agency.
    [22] Castro-Cruz D., Régnier J., Bertrand E., et al., 2020. A new parameter to empirically describe and predict the non-linear seismic response of sites derived from the analysis of Kik-Net database. Soil Dynamics and Earthquake Engineering, 128: 105833. doi: 10.1016/j.soildyn.2019.105833
    [23] Darragh R. B., Shakal A. F., 1991. The site response of two rock and soil station pairs to strong and weak ground motion. Bulletin of the Seismological Society of America, 81(5): 1885-1899.
    [24] Field E. H., Johnson P. A., Beresnev I. A., et al., 1997. Nonlinear ground-motion amplification by sediments during the 1994 Northridge earthquake. Nature, 390(6660): 599-602. doi: 10.1038/37586
    [25] Frankel A. D., Carver D. L., Williams R. A., 2002. Nonlinear and linear site response and basin effects in Seattle for the M 6.8 Nisqually, Washington, earthquake. Bulletin of the Seismological Society of America, 92(6): 2090-2109. doi: 10.1785/0120010254
    [26] Hardin B. O., Drnevich V. P., 1972. Shear modulus and damping in soils: measurement and parameter effects. Journal of the Soil Mechanics and Foundations Division, 98(6): 603-624. doi: 10.1061/JSFEAQ.0001756
    [27] Hartzell S., 1998. Variability in nonlinear sediment response during the 1994 Northridge, California, earthquake. Bulletin of the Seismological Society of America, 88(6): 1426-1437.
    [28] Héloïse C., Bard P. Y., Rodriguez-Marek A., 2012. Site effect assessment using KiK-net data: part 1. A simple correction procedure for surface/downhole spectral ratios. Bulletin of Earthquake Engineering, 10(2): 421-448. doi: 10.1007/s10518-011-9283-1
    [29] Huang H. C., Shieh C. S., Chiu H. C., 2001. Linear and nonlinear behaviors of soft soil layers using Lotung downhole array in Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 12(3): 503-524. doi: 10.3319/TAO.2001.12.3.503(T)
    [30] Noguchi S., Sasatani T., 2008. Quantification of degree of nonlinear site response. In: The 14th World Conference on Earthquake Engineering. Beijing, China: WCEE.
    [31] Pavlenko O., Irikura K., 2002. Changes in shear moduli of liquefied and nonliquefied soils during the 1995 Kobe earthquake and its aftershocks at three vertical-array sites. Bulletin of the Seismological Society of America, 92(5): 1952-1969. doi: 10.1785/0120010143
    [32] Pavlenko O. V., Wen K. L., 2008. Estimation of nonlinear soil behavior during the 1999 Chi-Chi, Taiwan, Earthquake. Pure and Applied Geophysics, 165(2): 373-407. doi: 10.1007/s00024-008-0309-9
    [33] Pender M. J., 1997. Recent developments in earthquake geotechnical engineering. Bulletin of the New Zealand Society for Earthquake Engineering, 30(2): 167-173. doi: 10.5459/bnzsee.30.2.167-173
    [34] Pitilakis K., Riga E., Anastasiadis A., 2013. New code site classification, amplification factors and normalized response spectra based on a worldwide ground-motion database. Bulletin of Earthquake Engineering, 11(4): 925-966. doi: 10.1007/s10518-013-9429-4
    [35] Régnier J., Cadet H., Bonilla L. F., et al., 2013. Assessing nonlinear behavior of soils in seismic site response: statistical analysis on kik-net strong-motion data. Bulletin of the Seismological Society of America, 103(3): 1750-1770. doi: 10.1785/0120120240
    [36] Régnier J., Cadet H., Bard P. Y., 2016. Empirical quantification of the impact of nonlinear soil behavior on site response. Bulletin of the Seismological Society of America, 106(4): 1710-1719. doi: 10.1785/0120150199
    [37] Seed H. B., Idriss I. M., Kiefer F. W., 1969. Characteristics of rock motions during earthquakes. Journal of the Soil Mechanics and Foundations Division, 1969, 95(15): 1199-1218.
    [38] Steidl J. H., Tumarkin A. G., Archuleta R. J., 1996. What is a reference site?. Bulletin of the Seismological Society of America, 86(6): 1733-1748.
    [39] Tibshirani R., 2011. Regression shrinkage and selection via the lasso: a retrospective. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(3): 273-282. doi: 10.1111/j.1467-9868.2011.00771.x
    [40] Trifunac M. D., Todorovska M. I., 1996. Nonlinear soil response-1994 Northridge, California, earthquake. Journal of Geotechnical Engineering, 122(9): 725-735. doi: 10.1061/(ASCE)0733-9410(1996)122:9(725)
    [41] Tsuda K., Archuleta R. J., Koketsu K., 2006. Quantifying the spatial distribution of site response by use of the Yokohama high-density strong-motion network. Bulletin of the Seismological Society of America, 96(3): 926-942. doi: 10.1785/0120040212
    [42] Wen K. L., Beresnev I. A., Yeh Y. T., 1994. Nonlinear soil amplification inferred from downhole strong seismic motion data. Geophysical Research Letters, 21(24): 2625-2628. doi: 10.1029/94GL02407
    [43] Wen K. L., Lin C. M., Chiang H. J., et al., 2008. Effect of surface geology on ground motions: the case of station TAP056-Chutzuhu site. Terrestrial, Atmospheric and Oceanic Sciences, 19(5): 451-462. doi: 10.3319/TAO.2008.19.5.451(T)
    [44] Zhu C. B., Pilz M., Cotton F., 2020. Which is a better proxy, site period or depth to bedrock, in modelling linear site response in addition to the average shear-wave velocity?. Bulletin of Earthquake Engineering, 18(3): 797-820. doi: 10.1007/s10518-019-00738-6
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  173
  • HTML全文浏览量:  83
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-27
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回