Study on Restoring Force Model of High-strength Concrete Columns Reinforced with Multiple Composite Central Reinforcements
-
摘要: 基于8根高强混凝土多重复合芯柱在低周往复荷载作用下的试验结果,考虑轴压比、箍筋间距、配箍率等因素,提出骨架曲线特征点理论计算模型。同时,考虑加载历程对芯柱性能退化的影响,根据试验拟合结果引入刚度退化模型,以反映各试件滞回曲线卸载刚度退化规律,给出恢复力模型滞回规则,并将滞回曲线模拟值与试验值进行对比。结果表明:骨架曲线特征点计算方法具有较高精度,计算骨架曲线与试验测量骨架曲线吻合良好,可为高强混凝土多重复合芯柱非线性地震反应分析和工程设计提供参考。Abstract: Based on the quasi-static cyclic tests of eight high-strength concrete columns reinforced with multiple composite central reinforcements, a theoretical calculation model was presented to predict the characteristic points of skeleton curves for the columns considering influencing factors such as the axial compression ratio, stirrup spacing, and stirrup ratio. In addition, a restoring force model was introduced considering the degradation of unloading stiffness based on the fitted results of cyclic loading test data. The results show that the proposed model can accurately predict the characteristic points for these columns. The simulated hysteretic behaviors based on the restoring force model had good agreement with those from experimental results. Therefore, the proposed restoring force model can be applied for the nonlinear dynamic analysis of structures with such kinds of multiple reinforcement high-concrete columns.
-
Key words:
- Core column /
- Stirrup form /
- Skeleton curve /
- Seismic behavior /
- Restoring force model
-
表 1 试件主要参数
Table 1. Main parameters of specimens
试件编号 外芯 内芯 内芯箍筋间距s/mm 纵筋配筋率ρl/% 体积配箍率ρw/% 轴力Nt/kN 试验轴压比n 柱高H/mm CC — — 100 2.83 1.68 1 270 0.19 1 200 C-C-100 圆形 — 100 3.58 1.87 1 270 0.19 1 200 C-DC-100 圆形 圆形 100 3.90 1.96 1 270 0.19 1 200 C-DC-HA-100 圆形 圆形 100 3.90 1.96 3 180 0.48 1 200 C-DC-200 圆形 圆形 200 3.90 0.98 1 270 0.19 1 200 C-RC-100 方形 圆形 100 3.90 2.02 1 270 0.19 1 200 C-DR-100 方形 方形 100 3.90 2.04 1 270 0.19 1 200 C-SC-100 螺旋 圆形 100 3.90 2.03 1 270 0.19 1 200 注:试件编号“C-DC-HA-100”中“C”表示芯柱试件,“DC”表示内芯和外芯均采用圆形箍筋形式的芯柱,“HA”表示高轴压比试件,“100”表示箍筋间距为100 mm,“RC”表示外芯和内芯分别为方形和圆形箍筋形式的芯柱;“DR”表示外芯和内芯均采用方形箍筋形式的芯柱;“SC”表示外芯和内芯分别为螺旋型和圆形箍筋形式的芯柱。 表 2 侧向约束系数和约束混凝土强度
Table 2. Confinement factors and strength of confined concrete
试件名称 ${f'_{{\rm{el,s}}}}$ ${f'_{{\rm{el,d}}}}$ ${f'_{{\rm{el,h}}}}$ ${K_{\rm{s}}}$ ${K_{\rm{d}}}$ ${K_{\rm{h}}}$ ${f'_{{\rm{co}}}}$ ${f'_{{\rm{ccs}}}}$ ${f'_{{\rm{ccd}}}}$ ${f'_{{\rm{cch}}}}$ CC 2.03 — — 1.29 — — 43.4 56.1 — — C-C-100 2.03 2.66 — 1.29 1.37 — 43.4 56.1 59.6 — C-DC-100 2.03 2.66 3.46 1.29 1.37 1.47 43.4 56.1 59.6 63.7 C-DC-HA-100 2.03 2.66 3.46 1.29 1.37 1.47 43.4 56.1 59.6 63.7 C-DC-200 2.03 2.23 2.31 1.29 1.32 1.33 43.4 56.1 57.2 57.7 C-RC-100 2.03 2.38 3.19 1.29 1.34 1.44 43.4 56.1 58.1 62.3 C-DR-100 2.03 2.38 2.88 1.29 1.34 1.40 43.4 56.1 58.1 60.7 C-SC-100 2.03 2.78 3.58 1.29 1.39 1.48 43.4 56.1 60.2 64.3 注:${K_{\rm{s}}}$、${K_{\rm{d}}}$、${K_{\rm{h}}}$分别对应低约束区、中约束区、高约束区侧向约束因子;${f'_{{\rm{ccs}}}}$、${f'_{{\rm{ccd}}}}$、${f'_{{\rm{cch}}}}$分别对应低约束区、中约束区、高约束区混凝土峰值应力 表 3 计算结果与试验结果对比
Table 3. Comparison between calculated and measured results
试件名称 屈服荷载Py/kN 屈服位移Δy/mm 峰值荷载Pm/kN 峰值位移Δm/mm 极限荷载Pu/kN 极限位移Δu/mm 位移延性系数μ CC 试验值 484.8 13.0 551.0 25.3 468.3 55.4 4.3 计算值 470.8 12.7 529.0 24.4 449.7 52.7 4.1 C-C-100 试验值 517.5 14.8 591.1 23.7 502.5 58.8 4.0 计算值 502.2 14.3 564.3 27.4 479.6 49.9 3.5 C-DC-100 试验值 554.1 17.7 622.6 39.5 529.2 55.2 3.1 计算值 516.1 19.7 579.9 37.9 492.9 63.2 3.2 C-DC-HA-100 试验值 743.4 16.0 857.4 27.9 728.8 43.5 2.7 计算值 791.2 16.7 889.0 32.0 755.7 50.3 3.0 C-DC-200 试验值 576.2 11.1 651.5 29.5 553.7 40.9 3.7 计算值 507.9 14.2 568.8 27.4 483.5 35.8 2.5 C-RC-100 试验值 581.2 14.1 649.4 24.7 552.0 48.2 3.4 计算值 530.0 15.6 595.5 29.9 506.2 49.3 3.2 C-DR-100 试验值 553.2 15.1 631.2 26.4 536.6 48.2 3.2 计算值 522.9 15.6 587.5 29.9 499.4 49.0 3.1 C-SC-100 试验值 578.7 15.5 652.2 34.4 554.4 53.9 3.5 计算值 532.8 17.6 598.6 33.8 508.8 55.5 3.2 -
[1] 董三升, 赵均海, 雷自学等, 2012. 高强混凝土加芯柱恢复力特性研究. 中国公路学报, 25(4): 90—96. doi: 10.3969/j.issn.1001-7372.2012.04.015Dong S. S., Zhao J. H., Lei Z. X., et al., 2012. Research on the restoring force of high-strength concrete columns with central reinforcement. China Journal of Highway and Transport, 25(4): 90—96. doi: 10.3969/j.issn.1001-7372.2012.04.015 [2] 范重, 钱稼茹, 吴学敏, 2001. 核心配筋柱抗震性能试验研究. 建筑结构学报, 22(1): 14—19. doi: 10.3321/j.issn:1000-6869.2001.01.003Fan Z., Qian J. R., Wu X. M., 2001. Experimental study on seismic behavior of concrete columns with central reinforcement. Journal of Building Structures, 22(1): 14—19. doi: 10.3321/j.issn:1000-6869.2001.01.003 [3] 冯鹏, 强翰林, 叶列平, 2017. 材料、构件、结构的“屈服点”定义与讨论. 工程力学, 34(3): 36—46. doi: 10.6052/j.issn.1000-4750.2016.03.0192Feng P., Qiang H. L., Ye L. P., 2017. Discussion and definition on yield points of materials, members and structures. Engineering Mechanics, 34(3): 36—46. doi: 10.6052/j.issn.1000-4750.2016.03.0192 [4] 郭子雄, 吕西林, 2004a. 高轴压比框架柱恢复力模型试验研究. 土木工程学报, 37(5): 32—38.Guo Z. X., Lü X. L., 2004a. Experimental study on the hysteretic model of RC columns with high axial compressive ratio. China Civil Engineering Journal, 37(5): 32—38. [5] 郭子雄, 杨勇, 2004b. 恢复力模型研究现状及存在问题. 世界地震工程, 20(4): 47—51.Guo Z. X., Yang Y., 2004b. State-of-the-art of restoring force models for RC structures. World Earthquake Engineering, 20(4): 47—51. [6] 黄永安, 2019. 外方内双螺旋箍筋约束混凝土柱轴压承载力计算方法. 铁道标准设计, 63(3): 130—137.Huang Y. A., 2019. Calculation method of axial compressive bearing capacity of concrete columns confined by double helix stirrups and rectangular stirrups. Railway Standard Design, 63(3): 130—137. [7] 黄永安, 张超凡, 2019. 外方内双圆箍筋约束高强混凝土柱抗震性能试验研究. 工业建筑, 49(6): 87—93.Huang Y. A., Zhang C. F., 2019. Experimental research on the seismic behavior of high-strength concrete columns confined by double circular stirrups and rectangular stirrups. Industrial Construction, 49(6): 87—93. [8] 姜磊, 郑春梅, 冯丽娜, 2020. 恢复力模型中求突变折点的一种新方法. 地震工程与工程振动, 40(2): 171—176.Jiang L., Zheng C. M., Feng L. N., 2020. A new method for dealing with the stiffness critical point in restoring force models. Earthquake Engineering and Engineering Dynamics, 40(2): 171—176. [9] 雷自学, 董三升, 郭军庆等, 2010. 高强混凝土加芯柱抗震性能试验研究. 建筑结构学报, 31(12): 83—91.Lei Z. X., Dong S. S., Guo J. Q., et al., 2010. Test study on seismic performance of high-strength concrete columns with central reinforcement. Journal of Building Structures, 31(12): 83—91. [10] 李升才, 张诚紫, 2014. 高轴压比下密置焊接环式高强复合箍筋约束高强混凝土柱恢复力模型研究. 地震工程与工程振动, 34(6): 188—197.Li S. C., Zhang C. Z., 2014. Study on restoring force model for high strength concrete columns confined by butt-welded closed composite high strength stirrups with high axial compression ratios. Earthquake Engineering and Engineering Dynamics, 34(6): 188—197. [11] 李正良, 冯宏, 陈永庆, 2010. HSRC框架柱的恢复力特性. 西南交通大学学报, 45(6): 888—892. doi: 10.3969/j.issn.0258-2724.2010.06.011Li Z. L., Feng H., Chen Y. Q., 2010. Characteristics of restoring force of high strength reinforced concrete frame columns. Journal of Southwest Jiaotong University, 45(6): 888—892. doi: 10.3969/j.issn.0258-2724.2010.06.011 [12] 齐岳, 郑文忠, 2010. 核心高强混凝土柱荷载-位移恢复力模型. 哈尔滨工业大学学报, 42(4): 531—535. doi: 10.11918/j.issn.0367-6234.2010.04.006Qi Y., Zheng W. Z., 2010. Restoring-force model of load versus displacement for concrete columns with high strength core. Journal of Harbin Institute of Technology, 42(4): 531—535. doi: 10.11918/j.issn.0367-6234.2010.04.006 [13] 邢国华, 王浩楠, 黄永安等, 2020. 高强混凝土多重复合芯柱抗震性能试验研究. 土木工程学报, 53(4): 50—60.Xing G. H., Wang H. N., Huang Y. A., et al., 2020. Experimental study on seismic behavior of high-strength concrete columns reinforced with multiple composite central reinforcement. China Civil Engineering Journal, 53(4): 50—60. [14] 阎石, 肖潇, 阚立新等, 2005. 高强钢筋高强混凝土柱恢复力模型. 沈阳建筑大学学报(自然科学版), 21(2): 81—85.Yan S., Xiao X., Kan L. X., et al., 2005. Resilience model of high-strength reinforcement and high-strength concrete columns. Journal of Shenyang Jianzhu University (Natural Science), 21(2): 81—85. [15] 张微敬, 张兵, 李振宝等, 2013. 强约束大尺寸钢筋混凝土柱抗震性能试验研究. 工程力学, 30(12): 236—241. doi: 10.6052/j.issn.1000-4750.2013.02.0123Zhang W. J., Zhang B., Li Z. B., et al., 2013. Experimental study on seismic performance of large scale reinforced concrete columns with strong confinement. Engineering Mechanics, 30(12): 236—241. doi: 10.6052/j.issn.1000-4750.2013.02.0123 [16] 张艳青, 贡金鑫, 韩石, 2017. 钢筋混凝土杆件恢复力模型综述(Ⅰ). 建筑结构, 47(9): 65—70.Zhang Y. Q., Gong J. X., Han S., 2017. Reviews of restoring force model for reinforced concrete members (I). Building Structure, 47(9): 65—70. [17] 张艳青, 贡金鑫, 韩石, 2018. 钢筋混凝土杆件恢复力模型综述(Ⅱ). 建筑结构, 48(18): 53—58.Zhang Y. Q., Gong Ji. X., Han S., 2018. Research advances in hysteretic model of reinforced concrete members (Ⅱ). Building Structure, 48(18): 53—58. [18] Belarbi A., Hsu T. T. C., 1994. Constitutive laws of concrete in tension and reinforcing bars stiffened by concrete. ACI Structural Journal, 91(4): 465—474. [19] Dhakal R. P., Maekawa K., 2002. Reinforcement stability and fracture of cover concrete in reinforced concrete members. Journal of Structural Engineering, 128(10): 1253—1262. doi: 10.1061/(ASCE)0733-9445(2002)128:10(1253) [20] Lehman D. E., 2000. Seismic performance of well-confined concrete bridge columns. Berkeley: University of California. [21] Mander J. B., Priestley M. J. N., Park R., 1988. Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, 114(8): 1804—1826. doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804) [22] Park R., 1988. Ductility evaluation from laboratory and analytical testing. In: Proceedings of the 9th World Conference on Earthquake Engineering. Kyoto: IAEE. [23] Priestley M. J. N., Park R., 1987. Strength and ductility of concrete bridge columns under seismic loading. ACI Structural Journal, 84(1): 61—76. [24] Sezen H., Setzler E. J., 2008. Reinforcement slip in reinforced concrete columns. ACI Structural Journal, 105(3): 280—289. [25] Yin S. Y. L., Wang J. C., Wang P. H., 2012. Development of multi-spiral confinements in rectangular columns for construction automation. Journal of the Chinese Institute of Engineers, 35(3): 309—320. doi: 10.1080/02533839.2012.655528