Late Quaternary Slip Rates along Western Segment of the Wudaoliang-Qumalai Fault System in Central Tibet
-
摘要: 五道梁-曲麻莱断裂系位于青藏高原中部,关于其晚第四纪活动性迄今鲜有介绍。由高分辨率卫星影像解译和野外地质考察可知,断裂系西段由五道梁南山北缘断裂和五道梁南山南缘断裂组成,二者分别断错了五道梁南山两侧的各级洪积扇。通过洪积扇上的断错地貌分析和光释光测年方法得到南缘断裂缩短速率为(0.25±0.11)mm/a,北缘断裂缩短速率为(0.50±0.05)mm/a。基于经验公式和最新洪积扇上陡坎高度,推测南、北缘断裂可能曾发生7.2~7.4级地震,大震复发周期长达8 000余年;如果陡坎高度由2次古地震事件叠加形成,则可能发生6.9~7.1级地震,全新世中期以来大震复发周期可能为2 000~3 000年。
-
关键词:
- 逆断层 /
- 洪积扇断错 /
- 滑动速率 /
- 五道梁-曲麻莱断裂系 /
- 巴颜喀拉地块
Abstract: The Wudaoliang-Qumalai fault system is located in the central of Qinghai-Tibet Plateau, and little is known about its activity since Late Quaternary. Based on high-resolution satellite image interpretation and field investigation, it can be seen that Wudaoliang southern mountain faults is composed of the northern margin fault of Wudaoliang southern mountain and the southern margin fault of Wudaoliang southern mountain. The two faults displaced new diluvial fans on both sides of the Mountain. We used unmanned aerial vehicle topographic surveying and OSL dating of offset diluvial fans to characterize shortening rate along western segment of the Wudaoliang-Qumalai fault system being 0.25±0.11 mm/a and 0.50±0.05 mm/a, respectively. Fault displacement on newest fan and scaling relationships imply that the most recent earthquake was approximately M7.2~7.4 with a recurrence period of more than 8 000 years. If there were two events on the fans, the events were M6.9~7.1 with the recurrence period during 2000~3000 years since the middle Holocene.-
Key words:
- Thrust fault /
- Displaced diluvial fans /
- Slip rate /
- Wudaoliang-Qumalai fault system /
- Bayan har block
1) 2中国地震局工程地震研究中心,2002. 青藏铁路昆仑山口—桑雄、羊八井—拉萨地段活动断层鉴定报告2) 3中国地震局工程地震研究中心,2002. 青藏铁路昆仑山口—桑雄、羊八井—拉萨地段活动断层鉴定报告 -
引言
天津地震台网由测震台网观测台站和地球物理台网观测站共200多个无人值守台站组成。台站原有UPS供电系统仅有交流输出功能, 且无法远程监控。因此传统的维护方式中台站维护人员无法通过远程系统准确判断台站故障类型, 需亲临台站现场进行检修, 但如果有完善的远程管理系统, 可远程修复部分故障, 减少不必要的人力和财力浪费。依托“十二五”地震台站观测环境改造项目, 结合天津市无人值守台站的实际情况, 设计智能直流不间断电源及管理系统。
1. 电源及系统设计
为解决无人值守台站直流供电设备多、智能化管理水平低的运行现状, 设计开发了直流不间断电源及管理系统。在电源设备端通过硬件实现直流供电和监测控制功能, 在管理系统端通过软件实现对电源设备各硬件模块的远程监控。最终电源设备可为地震台站观测设备单独提供直流供电, 管理系统可对台站交流供电、直流输出、电池电压、网络状态等信息进行远程监控, 同时管理系统可远程控制交流供电和太阳能供电之间的切换、电池充放电、直流输出端口开关状态(王建国等, 2010;穆慧敏等, 2018)。
1.1 智能直流电源设计
为解决台站设备直流供电、电池充电、交流电状态监测、交流电中断后太阳能供电接入、电池状态监测和控制、与管理系统通讯、设备功能扩展、系统升级配置、短信远程控制等功能, 设计了智能直流电源, 其硬件构成如图 1所示。电源模块将220V交流电转换为13.6V直流电, 为设备供电和电池充电;220V监测模块实现对交流电的断电检测;充电管理模块支持对24V@36AH—100AH铅酸电池进行充放电管理;电压监测模块可检测蓄电池电压, 防止蓄电池过冲过放;太阳能接入模块支持1路24V太阳能输入, 配合太阳能控制器, 实现光伏电源管理;CPU模块为智能电源核心模块, 支持AC220V接口和24V太阳能供电输入接口并行, 为设备提供供电输入支撑, 支持对直流输出端口开关状态进行远程控制, 支持通过web界面远程访问控制等功能;以太网口模块用于直流电源与监控平台的通讯;RS232串口模块用于系统升级及配置;RS485串口模块可外接温湿度模块, 用于检测台站温湿度, 同时支持多路其他物理量测量模块扩展;4路12V输出端口、1路5V输出端口和1路15V输出端口的直流稳压输出供台站设备使用;SMS短信模块可通过SMS短信对直流输出端口开关状态进行远程控制。
1.2 监控平台设计
智能直流不间断电源监控平台针对智能直流电源在地震台站进行订制化应用设计, 采用模块化管理, 通过地图、电池监控、统计报表、维修管理和设备管理等模块的设计与实现, 提供高效的地震台站用电设备及相关信息管理平台, 实现实时监控台站电源状态, 显示台站智能电源设备充放电工作模式、电池电压、交流电输入状态等信息, 对台站端智能供电设备进行远程控制, 对供电端口远程断电、电池放电等进行控制。智能直流不间断电源监控平台各模块功能设计如表 1所示。
表 1 各模块功能设计Table 1. Functional design of each module功能模块 功能设计 用户管理 分为超级用户和设备维护用户, 具备不同权限, 超级用户负责整个系统的控制、管理及其他用户分配和权限设置等 监控主界面 监控界面支持本地地图, 电子地图上显示监控台站分布 台站运行状态监控以报警形式告知用户, 供电告警及通讯告警 台站监控设备列表 设备实时运行状态查询 台站远程控制 台站参数信息配置及台站添加与删除等 告警历史事件与统计数据查询 台站供电输入中断时长等统计数据 光纤链路及各网络设备中断时长统计数据 各台站查询时间段内的分类中断时长与中断次数统计报表输出等 台站维修日志查询与输出 按通讯与供电故障两类查询与输出维修日志功能等 1.3 数据库设计
智能直流不间断电源管理系统数据库主要用于存储无人值守台站、设备供电信息和状态、统计报表、系统告警、维修日志等信息。系统数据库选用MySQL数据库, MySQL数据库是目前运行速度最快的数据库, 具有支持跨平台、安全性高和存储容量大的特点(王建国等, 2013;孙路强等, 2016)。系统应用inUPS数据库, 涉及11张表, 具体表名和功能如表 2所示。
表 2 inUPS数据库结构Table 2. Database structure of inUPS表名 说明 Device Agent 设备信息 Device ConnectState 设备连接状态 DeviceReport Data 统计报表 Groups 设备分类 Repair Log 维修日志 System Alert 系统告警 System Log 系统日志 System Property 系统配置 Users 用户管理 Web Module 模块管理 Web Privilege 权限管理 1.4 系统功能流程
本系统主要包括前置数据接收处理、数据存储和web管理三大功能模块。前置数据接收处理模块主要负责收集由台站端通讯路由器和智能电源自动上传的通讯、供电状态信息, 并进行有线传输链路通断和各设备供电线路状态判断, 发布通讯链路或设备运行异常和故障消息给特定值班员, 同时将消息按设定形式自动显示于监控web界面。系统管理员收到通讯链路和设备故障报警信息后, 可通过web控制页面发出指令, 系统自动将其转发至远端设备, 同时汇集远端设备响应数据, 并将其反馈给管理员。
数据存储模块主要负责存储前置服务器接收的设备运行状况数据及系统操作动作细节等信息, 系统自动分类、编号, 然后将其写入数据库中, 以备后续查询及统计使用。web管理模块提供web界面, 方便管理员进行远端设备运行状态监控、参数设置及远程管理。该模块具备报警提醒功能, 当前置服务器检测到远端设备故障时, 前置模块通知web管理模块, web管理模块通过web监控主页面提供声音报警, 并通过短信向预先设置的接收人员告警。该模块提供用户权限管理, 通过分配不同角色用户限制访问者对资源的操作权限。同时提供系统各类数据按年、月、日统计报表输出功能。具体功能流程如图 2所示。
2. 系统应用
天津无人值守台站已大规模安装智能直流不间断电源, 并接入监控平台。值班人员每天定时登陆智能直流不间断电源管理系统监控平台, 通过主界面(见图 3)的地图界面查看电源设备在线状态(孙路强等, 2015), 当监测到台站智能直流电源离线, 电子地图上的台站图标由绿色变为红色。
通过电池监控界面查看电源设备运行状态并进行设备控制管理, 查看系统报表, 记录维修日志, 电池监控界面如图 4所示。
通过系统管理对设备、用户进行管理。值班人员通过智能直流不间断电源管理系统发现故障, 及时通知运维人员, 运维人员第一时间采取措施, 避免台站观测数据中断。
3. 实用效果
通过安装和部署地震台站智能直流不间断电源及管理系统, 无人值守台站智能化管理水平明显提高。在实际运行过程中, 多次监测到台站交流供电中断, 运维人员将交流供电切换为太阳能供电, 保证了观测系统的正常运行, 并及时与看护人员进行沟通, 远程解决了大部分供电问题。偶尔有专业设备或通用设备死机的情况, 通过监控平台单独控制相应的直流输出端口开关状态, 对设备进行远程重启, 解决了设备死机问题。运维人员定期对蓄电池进行远程充放电操作, 延长了蓄电池的使用寿命。同时运维人员将每次维修情况录入管理系统, 既形成了完整的维修档案, 又方便查询。针对管理系统的数据统计, 有针对性地对部分台站进行升级改造, 提高了台站监测数据的连续率。
4. 结语
地震台站智能直流不间断电源管理系统的应用大大提高了无人值守台站智能化管理水平, 显著提高了运维人员工作效率, 节约了运维成本, 对台站观测设备连续稳定运行起到了关键作用。利用电源设备扩展接口远程控制台站智能电表、安防设备和利用手机端软件监控不间断电源等功能有待进一步开发。
-
-
[1] 邓起东, 于贵华, 叶文华, 1992. 地震地表破裂参数与震级关系的研究. 见: 国家地震局地质研究所主编, 活动断裂研究(2). 北京: 地震出版社, 247—264. [2] 邓起东, 张培震, 冉勇康等, 2003. 中国活动构造与地震活动. 地学前缘, 10(S1): 66-73.Deng Q. D., Zhang P. Z., Ran Y. K., et al., 2003. Active tectonics and earthquake activities in China. Earth Science Frontiers, 10(S1): 66-73. (in Chinese) [3] 罗浩, 徐锡伟, 刘小利等, 2020. 阿尔金断裂东段的构造转换模式. 地质学报, 94(3): 692-706. doi: 10.3969/j.issn.0001-5717.2020.03.002Luo H., Xu X. W., Liu X. L., et al., 2020. The structural deformation pattern in the eastern segment of the Altyn Tagh fault. Acta Geologica Sinica, 94(3): 692-706. (in Chinese) doi: 10.3969/j.issn.0001-5717.2020.03.002 [4] 谢成良, 叶高峰, 魏文博等, 2012. 藏北高原主要断裂带电性结构特征. 地球物理学报, 55(12): 3991-4002. doi: 10.6038/j.issn.0001-5733.2012.12.011Xie C. L., Ye G. F., Wei W. B., et al., 2012. Electrical features of the main faults beneath northern Tibetan Plateau. Chinese Journal of Geophysics, 55(12): 3991-4002. (in Chinese) doi: 10.6038/j.issn.0001-5733.2012.12.011 [5] 徐锡伟, 吴熙彦, 于贵华等, 2017. 中国大陆高震级地震危险区判定的地震地质学标志及其应用. 地震地质, 39(2): 219-275. doi: 10.3969/j.issn.0253-4967.2017.02.001Xu X. W., Wu X. Y., Yu G. H., et al., 2017. Seismo-Geological signatures for identifying M≥7.0 earthquake risk areas and their premilimary application in mainland China. Seismology and Geology, 39(2): 219-275. (in Chinese) doi: 10.3969/j.issn.0253-4967.2017.02.001 [6] 朱利东, 2004. 青藏高原北部隆升与盆地和地貌记录. 成都: 成都理工大学, 1—197.Zhu L. D., 2004. Uplift of the North of Qinghai-Tibet plateau and record in basins and geomorphy. Chengdu: Chengdu University of Technology, 1—197. (in Chinese) [7] Deng Q. D., Zhang P. Z., Ran Y. K., et al., 2003. Basic characteristics of active tectonics of China. Science in China Series D: Earth Sciences, 46(4): 356-372. [8] Huang X. M., Jing Z. J., Xie F. R., et al., 2019. Late quaternary slip rate of the east segment of the Yushu fault in the central-eastern Tibetan Plateau. Quaternary International, 532: 146-156. doi: 10.1016/j.quaint.2019.11.029 [9] Lin A. M., Rao G., Jia D., et al., 2011. Co-seismic strike-slip surface rupture and displacement produced by the 2010 Mw 6.9 Yushu earthquake, China, and implications for Tibetan tectonics. Journal of Geodynamics, 52(3-4): 249-259. doi: 10.1016/j.jog.2011.01.001 [10] Liu-Zeng J., Zhang Z., Wen L., et al., 2009. Co-seismic ruptures of the 12 May 2008, Ms 8.0 Wenchuan earthquake, Sichuan: East-West crustal shortening on oblique, parallel thrusts along the eastern edge of Tibet. Earth and Planetary Science Letters, 286(3-4): 355-370. doi: 10.1016/j.jpgl.2009.07.017 [11] Luo H., Xu X. W., Gao Z. W., et al., 2019. Spatial and temporal distribution of earthquake ruptures in the eastern segment of the Altyn Tagh fault, China. Journal of Asian Earth Sciences, 173: 263-274. doi: 10.1016/j.jseaes.2019.01.005 [12] Tapponnier P., Xu Z. Q., Roger F., et al., 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294(5547): 1671-1677. doi: 10.1126/science.105978 [13] Van Der Woerd J., Ryerson F. J., Tapponnier P., et al., 2000. Uniform slip‐rate along the Kunlun Fault: Implications for seismic behaviour and large‐scale tectonics. Geophysical Research Letters, 27(16): 2353-2356. doi: 10.1029/1999GL011292 [14] Xu X. W., Chen W. B., Ma W. T., et al., 2002. Surface rupture of the Kunlunshan earthquake (Ms 8.1), northern Tibetan Plateau, China. Seismological Research Letters, 73(6): 884-892. doi: 10.1785/gssrl.73.6.884 [15] Xu X. W., Wen X. Z., Yu G. H., et al., 2009. Coseismic reverse- and oblique-slip surface faulting generated by the 2008 Mw 7.9 Wenchuan earthquake, China. Geology, 37(6): 515-518. doi: 10.1130/G25462A.1 [16] Xu X. W., Tan X. B., Yu G. H., et al., 2013. Normal- and oblique-slip of the 2008 Yutian earthquake: evidence for eastward block motion, northern Tibetan Plateau. Tectonophysics, 584: 152-165. doi: 10.1016/j.tecto.2012.08.007 [17] Zhang J., Wen X. Z., Cao J. L., et al., 2018. Surface creep and slip-behavior segmentation along the northwestern Xianshuihe fault zone of southwestern China determined from decades of fault-crossing short-baseline and short-level surveys. Tectonophysics, 722: 356-372. doi: 10.1016/j.tecto.2017.11.002 [18] Zhang P. Z., Shen Z. K., Wang M., et al., 2004. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32(9): 809-812. doi: 10.1130/G20554.1 [19] Zhang Y. S., Yao X., Yu K., 2016. Late-Quaternary slip rate and seismic activity of the Xianshuihe fault zone in Southwest China. Acta Geologica Sinica (English Edition), 90(2): 525-536. doi: 10.1111/1755-6724.12688 期刊类型引用(0)
其他类型引用(1)
-