• ISSN 1673-5722
  • CN 11-5429/P

青藏高原中部五道梁-曲麻莱断裂系西段晚第四纪滑动速率厘定

罗浩 郭广海 张斌 王继 缑亚森 徐伟 高战武

罗浩,郭广海,张斌,王继,缑亚森,徐伟,高战武,2021. 青藏高原中部五道梁-曲麻莱断裂系西段晚第四纪滑动速率厘定. 震灾防御技术,16(2):283−292. doi:10.11899/zzfy20210207. doi: 10.11899/zzfy20210207
引用本文: 罗浩,郭广海,张斌,王继,缑亚森,徐伟,高战武,2021. 青藏高原中部五道梁-曲麻莱断裂系西段晚第四纪滑动速率厘定. 震灾防御技术,16(2):283−292. doi:10.11899/zzfy20210207. doi: 10.11899/zzfy20210207
Luo Hao, Guo Guanghai, Zhang Bin, Wang Ji, Gou Yasen, Xu Wei, Gao Zhanwu. Late Quaternary Slip Rates along Western Segment of the Wudaoliang-Qumalai Fault System in Central Tibet[J]. Technology for Earthquake Disaster Prevention, 2021, 16(2): 283-292. doi: 10.11899/zzfy20210207
Citation: Luo Hao, Guo Guanghai, Zhang Bin, Wang Ji, Gou Yasen, Xu Wei, Gao Zhanwu. Late Quaternary Slip Rates along Western Segment of the Wudaoliang-Qumalai Fault System in Central Tibet[J]. Technology for Earthquake Disaster Prevention, 2021, 16(2): 283-292. doi: 10.11899/zzfy20210207

青藏高原中部五道梁-曲麻莱断裂系西段晚第四纪滑动速率厘定

doi: 10.11899/zzfy20210207
基金项目: 地震科技星火计划(XH21047);中国科学院战略性先导科技专项(XDA20070302)
详细信息
    作者简介:

    罗浩,男,生于1980年。副研究员。主要从事地震地质和地质灾害方面的研究。E-mail:hy-luo@163.com

  • 2中国地震局工程地震研究中心,2002. 青藏铁路昆仑山口—桑雄、羊八井—拉萨地段活动断层鉴定报告
  • 3中国地震局工程地震研究中心,2002. 青藏铁路昆仑山口—桑雄、羊八井—拉萨地段活动断层鉴定报告

Late Quaternary Slip Rates along Western Segment of the Wudaoliang-Qumalai Fault System in Central Tibet

  • 摘要: 五道梁-曲麻莱断裂系位于青藏高原中部,关于其晚第四纪活动性迄今鲜有介绍。由高分辨率卫星影像解译和野外地质考察可知,断裂系西段由五道梁南山北缘断裂和五道梁南山南缘断裂组成,二者分别断错了五道梁南山两侧的各级洪积扇。通过洪积扇上的断错地貌分析和光释光测年方法得到南缘断裂缩短速率为(0.25±0.11)mm/a,北缘断裂缩短速率为(0.50±0.05)mm/a。基于经验公式和最新洪积扇上陡坎高度,推测南、北缘断裂可能曾发生7.2~7.4级地震,大震复发周期长达8 000余年;如果陡坎高度由2次古地震事件叠加形成,则可能发生6.9~7.1级地震,全新世中期以来大震复发周期可能为2 000~3 000年。
    1)  2中国地震局工程地震研究中心,2002. 青藏铁路昆仑山口—桑雄、羊八井—拉萨地段活动断层鉴定报告
    2)  3中国地震局工程地震研究中心,2002. 青藏铁路昆仑山口—桑雄、羊八井—拉萨地段活动断层鉴定报告
  • 图  1  五道梁南山及其周缘地区活动断层分布图

    F1:东昆仑断裂;F2:五道梁南山北缘断裂;F3:五道梁南山南缘断裂;F4:玉树-甘孜断裂西段

    Figure  1.  Active faults map of the Wudaoliang and its adjacent regions

    图  2  五道梁南山北缘断裂分布图

    Figure  2.  Faults along Northern margin fault of Wudaoliang southern mountain

    图  3  五道梁南山北缘断裂北侧次级断裂断错地貌特征

    Figure  3.  Displaced platform of northern secondary fault of the northern margin fault

    图  4  五道梁南山北缘北侧次级断裂陡坎剖面

    Figure  4.  Scarp profiles of northern secondary fault of the northern margin fault

    图  5  五道梁南山北缘南侧断裂断错地貌

    Figure  5.  Displaced platform of southern secondary fault of the northern margin fault

    图  6  五道梁南山北缘南侧断裂陡坎剖面

    Figure  6.  Topographic profiles of southern secondary fault of the northern margin fault

    图  7  五道梁南山南缘断裂地表破裂带分布图

    Figure  7.  Faults along southern margin fault of Wudaoliang southern mountain

    图  8  五道梁南山南缘断裂实测地貌特征

    Figure  8.  Displaced landform of southern margin fault of Wudaoliang southern mountain

    图  9  五道梁南山南缘断裂两级洪积扇上地貌断错特征

    Figure  9.  Displaced diluvial fans of southern margin fault of Wudaoliang southern mountain

    图  10  五道梁南山南缘断裂在两级洪积扇上形成的陡坎纵剖面

    Figure  10.  Topographic profiles of southern margin fault of Wudaoliang southern mountain

  • [1] 邓起东, 于贵华, 叶文华, 1992. 地震地表破裂参数与震级关系的研究. 见: 国家地震局地质研究所主编, 活动断裂研究(2). 北京: 地震出版社, 247—264.
    [2] 邓起东, 张培震, 冉勇康等, 2003. 中国活动构造与地震活动. 地学前缘, 10(S1): 66-73.

    Deng Q. D., Zhang P. Z., Ran Y. K., et al., 2003. Active tectonics and earthquake activities in China. Earth Science Frontiers, 10(S1): 66-73. (in Chinese)
    [3] 罗浩, 徐锡伟, 刘小利等, 2020. 阿尔金断裂东段的构造转换模式. 地质学报, 94(3): 692-706. doi: 10.3969/j.issn.0001-5717.2020.03.002

    Luo H., Xu X. W., Liu X. L., et al., 2020. The structural deformation pattern in the eastern segment of the Altyn Tagh fault. Acta Geologica Sinica, 94(3): 692-706. (in Chinese) doi: 10.3969/j.issn.0001-5717.2020.03.002
    [4] 谢成良, 叶高峰, 魏文博等, 2012. 藏北高原主要断裂带电性结构特征. 地球物理学报, 55(12): 3991-4002. doi: 10.6038/j.issn.0001-5733.2012.12.011

    Xie C. L., Ye G. F., Wei W. B., et al., 2012. Electrical features of the main faults beneath northern Tibetan Plateau. Chinese Journal of Geophysics, 55(12): 3991-4002. (in Chinese) doi: 10.6038/j.issn.0001-5733.2012.12.011
    [5] 徐锡伟, 吴熙彦, 于贵华等, 2017. 中国大陆高震级地震危险区判定的地震地质学标志及其应用. 地震地质, 39(2): 219-275. doi: 10.3969/j.issn.0253-4967.2017.02.001

    Xu X. W., Wu X. Y., Yu G. H., et al., 2017. Seismo-Geological signatures for identifying M≥7.0 earthquake risk areas and their premilimary application in mainland China. Seismology and Geology, 39(2): 219-275. (in Chinese) doi: 10.3969/j.issn.0253-4967.2017.02.001
    [6] 朱利东, 2004. 青藏高原北部隆升与盆地和地貌记录. 成都: 成都理工大学, 1—197.

    Zhu L. D., 2004. Uplift of the North of Qinghai-Tibet plateau and record in basins and geomorphy. Chengdu: Chengdu University of Technology, 1—197. (in Chinese)
    [7] Deng Q. D., Zhang P. Z., Ran Y. K., et al., 2003. Basic characteristics of active tectonics of China. Science in China Series D: Earth Sciences, 46(4): 356-372.
    [8] Huang X. M., Jing Z. J., Xie F. R., et al., 2019. Late quaternary slip rate of the east segment of the Yushu fault in the central-eastern Tibetan Plateau. Quaternary International, 532: 146-156. doi: 10.1016/j.quaint.2019.11.029
    [9] Lin A. M., Rao G., Jia D., et al., 2011. Co-seismic strike-slip surface rupture and displacement produced by the 2010 Mw 6.9 Yushu earthquake, China, and implications for Tibetan tectonics. Journal of Geodynamics, 52(3-4): 249-259. doi: 10.1016/j.jog.2011.01.001
    [10] Liu-Zeng J., Zhang Z., Wen L., et al., 2009. Co-seismic ruptures of the 12 May 2008, Ms 8.0 Wenchuan earthquake, Sichuan: East-West crustal shortening on oblique, parallel thrusts along the eastern edge of Tibet. Earth and Planetary Science Letters, 286(3-4): 355-370. doi: 10.1016/j.jpgl.2009.07.017
    [11] Luo H., Xu X. W., Gao Z. W., et al., 2019. Spatial and temporal distribution of earthquake ruptures in the eastern segment of the Altyn Tagh fault, China. Journal of Asian Earth Sciences, 173: 263-274. doi: 10.1016/j.jseaes.2019.01.005
    [12] Tapponnier P., Xu Z. Q., Roger F., et al., 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294(5547): 1671-1677. doi: 10.1126/science.105978
    [13] Van Der Woerd J., Ryerson F. J., Tapponnier P., et al., 2000. Uniform slip‐rate along the Kunlun Fault: Implications for seismic behaviour and large‐scale tectonics. Geophysical Research Letters, 27(16): 2353-2356. doi: 10.1029/1999GL011292
    [14] Xu X. W., Chen W. B., Ma W. T., et al., 2002. Surface rupture of the Kunlunshan earthquake (Ms 8.1), northern Tibetan Plateau, China. Seismological Research Letters, 73(6): 884-892. doi: 10.1785/gssrl.73.6.884
    [15] Xu X. W., Wen X. Z., Yu G. H., et al., 2009. Coseismic reverse- and oblique-slip surface faulting generated by the 2008 Mw 7.9 Wenchuan earthquake, China. Geology, 37(6): 515-518. doi: 10.1130/G25462A.1
    [16] Xu X. W., Tan X. B., Yu G. H., et al., 2013. Normal- and oblique-slip of the 2008 Yutian earthquake: evidence for eastward block motion, northern Tibetan Plateau. Tectonophysics, 584: 152-165. doi: 10.1016/j.tecto.2012.08.007
    [17] Zhang J., Wen X. Z., Cao J. L., et al., 2018. Surface creep and slip-behavior segmentation along the northwestern Xianshuihe fault zone of southwestern China determined from decades of fault-crossing short-baseline and short-level surveys. Tectonophysics, 722: 356-372. doi: 10.1016/j.tecto.2017.11.002
    [18] Zhang P. Z., Shen Z. K., Wang M., et al., 2004. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32(9): 809-812. doi: 10.1130/G20554.1
    [19] Zhang Y. S., Yao X., Yu K., 2016. Late-Quaternary slip rate and seismic activity of the Xianshuihe fault zone in Southwest China. Acta Geologica Sinica (English Edition), 90(2): 525-536. doi: 10.1111/1755-6724.12688
  • 加载中
图(10)
计量
  • 文章访问数:  146
  • HTML全文浏览量:  79
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-28
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回