• ISSN 1673-5722
  • CN 11-5429/P

利用GM(1,1)预测模型预测房屋面积

谢江丽 阿布都瓦里斯•阿布都瓦衣提 李帅 姚远

谢江丽,阿布都瓦里斯•阿布都瓦衣提,李帅,姚远,2021. 利用GM(1,1)预测模型预测房屋面积—以乌鲁木齐市为例. 震灾防御技术,16(2):263−271. doi:10.11899/zzfy20210205. doi: 10.11899/zzfy20210205
引用本文: 谢江丽,阿布都瓦里斯•阿布都瓦衣提,李帅,姚远,2021. 利用GM(1,1)预测模型预测房屋面积—以乌鲁木齐市为例. 震灾防御技术,16(2):263−271. doi:10.11899/zzfy20210205. doi: 10.11899/zzfy20210205
Xie Jiang li, A Bu Du Wa Li Si• A Bu Du Wa Yi Ti, Li Shuai, Yao Yuan. Predict House Area By GM (1, 1) Model[J]. Technology for Earthquake Disaster Prevention, 2021, 16(2): 263-271. doi: 10.11899/zzfy20210205
Citation: Xie Jiang li, A Bu Du Wa Li Si• A Bu Du Wa Yi Ti, Li Shuai, Yao Yuan. Predict House Area By GM (1, 1) Model[J]. Technology for Earthquake Disaster Prevention, 2021, 16(2): 263-271. doi: 10.11899/zzfy20210205

利用GM(1,1)预测模型预测房屋面积以乌鲁木齐市为例

doi: 10.11899/zzfy20210205
基金项目: 中国地震局地震应急青年重点任务(CEA EDEM. 202022);新疆地震局科技创新团队计划(XJDZCXTD2020-2)
详细信息
    作者简介:

    谢江丽,女,生于1987年。工程师。主要从事地震活动性研究方面的工作。E-mail:670198463@qq.com

Predict House Area By GM (1, 1) ModelA Case Study of Urumqi

  • 摘要: 房屋面积数据是地震灾害损失评估的重要参数,也是地震应急数据库基础数据。数据库要求每年及时更新,但数据更新周期较长,达不到更新要求。本研究主要从乌鲁木齐统计年鉴中提取2001—2018年房屋基础数据,建立乌鲁木齐住宅建筑总面积及人均住宅面积数据增长模型,利用GM(1,1)预测模型和多元线性回归模型预测未来2年乌鲁木齐住宅建筑总面积和人均住宅面积。本研究得到的住宅建筑总面积及人均住宅面积数据可作为应急数据库中相关基础数据更新的补充手段,也可作为未来几年震害预测的参考基础数据。
  • 图  1  乌鲁木齐住宅建筑总面积曲线图

    Figure  1.  Curve of total area of residential buildings in Urumqi

    图  2  乌鲁木齐人均住宅面积曲线图

    Figure  2.  Curve of per capita residential area in Urumqi

    图  3  乌鲁木齐市住宅建筑总面积预测曲线图

    Figure  3.  Predictive Fitting curve of total area of residential buildings in Urumqi

    表  1  乌鲁木齐市住宅建筑总面积和人均住宅面积

    Table  1.   Total area of residential buildings and per capita residential area in Urumqi

    年份总面积/104m2人均面积/m2年份总面积/104m2人均面积/m2
    2001 3081.00 18.48 2010 5398.93 25.97
    2002 3216.00 17.48 2011 5779.95 27.31
    2003 3312.00 18.56 2012 5976.64 27.37
    2004 3379.00 17.70 2013 6340.26 29.28
    2005 3683.31 18.72 2014 6620.65 31.74
    2006 3957.60 19.33 2015 7001.20 31.08
    2007 4300.37 18.58 2016 7369.64 32.00
    2008 4908.29 20.67 2017 7865.22 32.36
    2009 5146.32 26.33 2018 8555.64 33.94
    下载: 导出CSV

    表  2  灰色系统GM(1,1)模型乌鲁木齐市住宅建筑总面积拟合

    Table  2.   Predictive fitting of total area of residential buildings in Urumqi using grey system GM(1,1) model

    年份实际值/104m2预测值/104m2相对误差年份实际值/104m2预测值/104m2相对误差
    20013081.0030810.0020105398.9352340.03
    20023216.0032210.0020115779.9555610.04
    20033312.0034220.0320125976.6459090.01
    20043379.0036360.0820136340.2662790.01
    20053683.3138640.0520146620.6566720.01
    20063957.6041060.0420157001.2070890.01
    20074300.3743620.0120167369.6475330.02
    20084908.2946350.0620177865.2280040.02
    20095146.3249250.0420188555.6485050.01
    下载: 导出CSV

    表  3  乌鲁木齐住宅建筑总面积GM(1,1)模型参数

    Table  3.   Parameters a and b of GM(1,1) model of total area of residential buildings in Urumqi

    系数数值
    a−0.0607
    b2936.9
    下载: 导出CSV

    表  4  精度检验等级参照表

    Table  4.   Precision inspection level reference table

    精度等级指标相对误差
    一级0.01
    二级0.05
    三级0.10
    下载: 导出CSV

    表  5  乌鲁木齐住宅建筑总面积一元线性回归参数

    Table  5.   Univariate linear regression parameter values of total area of residential buildings and per capita residential area in Urumqi

    a系数b有关指数R2显著性概率Sig常数项斜率统计量F
    系数319.674−637058.0120.9830.000−30.14430.396923.909
    下载: 导出CSV

    表  6  一元线性回归模型拟合得到的乌鲁木齐住宅建筑总面积

    Table  6.   Predictive fitting of total area of residential buildings in Urumqi by univariate linear regression

    年份实际值/104m2预测值/104m2相对误差年份实际值/104m2预测值/104m2相对误差
    20013081.002609.660.1520105398.935486.730.00
    20023216.002929.340.0920115779.955806.400.02
    20033312.003249.010.0220125976.646126.080.00
    20043379.003568.680.0620136340.266445.750.03
    20053683.313888.360.0620146620.656765.420.02
    20063957.604208.030.0620157001.207085.100.01
    20074300.374527.710.0620167369.647404.770.00
    20084908.294847.380.0520177865.227724.450.02
    20095146.325167.050.0120188555.648044.120.06
    下载: 导出CSV

    表  7  2001—2018年乌鲁木齐人均住宅面积影响因素原始数据

    Table  7.   Raw data of influencing factors of per capita residential area in Urumqi from 2001 to 2018

    年份人均住宅面积/m2人均GDP/万元居民人均可支配收入/元常住人口/万人住宅竣工面积/104m2
    200118.481.83317897.0166.71388.35
    200217.481.77808652.0172.37389.71
    200318.561.98999087.0178.63376.44
    200417.702.28208948.2183.74231.68
    200518.722.55079605.0190.50267.93
    200619.332.826110432.0198.00270.08
    200718.583.114011373.0263.42404.33
    200820.673.713312328.0273.24427.76
    200926.333.824913075.0284.32387.32
    201025.974.491714402.0311.03309.85
    201127.315.264916141.0321.21287.39
    201227.375.957618385.0335.00613.24
    201329.286.469521304.0346.00442.24
    201431.747.042826890.0353.00812.59
    201531.087.434031604.0355.00591.62
    201632.006.986534190.0351.96295.07
    201732.367.775637028.0350.40378.87
    201833.948.719640101.0350.58365.24
    下载: 导出CSV

    表  8  系数

    Table  8.   Coefficient

    项目非标准化系数标准系数斜率显著性概率Sig
    系数b标准误差
    常量b010.1232.7023.7460.002
    人均GDP1.5250.0200.2831.7740.2610
    常住人口0.0231.5440.1330.4830.8637
    人均可支配收入0.7461.1910.5841.2810.2230
    住宅竣工面积0.0000.003−0.008−0.1160.9090
    下载: 导出CSV

    表  9  各模型对乌鲁木齐人均住宅面积拟合值(m2

    Table  9.   Predictive fitting of per capita residential area in Urumqi of each model(Unit:m²)

    年份实际值多元线性回归模型GM(1,1)模型一元线性回归模型
    理论值绝对误差理论值绝对误差理论值绝对误差
    200118.4817.340.0618.480.0015.310.17
    200217.4817.440.0017.110.0216.410.06
    200318.5617.940.0317.900.0417.500.06
    200417.7018.500.0518.740.0618.590.05
    200518.7219.110.0219.610.0519.680.05
    200619.3319.770.0220.520.0620.770.07
    200718.5821.780.1721.480.1621.870.18
    200820.6722.990.1122.470.0922.960.11
    200926.3323.470.1123.520.1124.050.09
    201025.9725.200.0324.610.0525.140.03
    201127.3126.740.0225.760.0626.230.04
    201227.3728.280.0326.960.0227.330.00
    201329.2829.540.0128.210.0428.420.03
    201431.7430.990.0229.530.0729.510.07
    201531.0831.980.0330.900.0130.600.02
    201632.0031.420.0232.340.0131.690.01
    201732.3632.800.0133.840.0532.790.01
    201833.9434.480.0235.420.0433.880.00
    下载: 导出CSV

    表  10  不同模型误差分布比例

    Table  10.   Error distribution ratio of each model

    模型误差分级
    一级二级三级
    GM(1,1)模型17%61%89%
    一元线性回归模型22%56%83%
    多元线性回归模型17%78%83%
    下载: 导出CSV

    表  11  2019—2020年乌鲁木齐人均住宅面积影响因素预测值

    Table  11.   The result of total area of per capita residential area in Urumqi from 2019 to 2020

    年份人均GDP/万元居民人均可支配收入/元常住人口/万人
    201910.191744550341.12
    202011.162950070351.34
    下载: 导出CSV

    表  12  2019—2020年乌鲁木齐住宅建筑总面积和人均住宅面积预测结果

    Table  12.   The result of total area of residential buildings and per capita residential area in Urumqi from 2019 to 2020

    项目年份
    20192020
    乌鲁木齐住宅建筑总面积/104m290379602
    乌鲁木齐人均住宅面积/104m236.8338.96
    下载: 导出CSV
  • [1] 常想德, 孙静, 谭明等, 2017. 2016年新疆呼图壁6.2级地震房屋震害及成因浅析. 震灾防御技术, 12(1): 1—13. doi: 10.11899/zzfy20170101

    Chang X. D., Sun J., Tan M., et al., 2017. Study on earthquake damages by the 2016 Hutubi MS 6.2 earthquake. Technology for Earthquake Disaster Prevention, 12(1): 1—13. (in Chinese) doi: 10.11899/zzfy20170101
    [2] 陈志敏, 2008. 乌鲁木齐统计年鉴. 北京: 中国统计出版社.

    Chen Z. M., 2008. Urumqi statistical yearbook. Beijing: China Statistics Press. (in Chinese)
    [3] 陈志敏, 2009. 乌鲁木齐统计年鉴. 北京: 中国统计出版社.

    Chen Z. M., 2009. Urumqi statistical yearbook. Beijing: China Statistics Press. (in Chinese)
    [4] 陈志敏, 2010. 乌鲁木齐统计年鉴. 北京: 中国统计出版社.

    Chen Z. M., 2010. Urumqi statistical yearbook. Beijing: China Statistics Press. (in Chinese)
    [5] 邓聚龙, 1990. 灰色系统理论教程. 武汉: 华中理工大学出版社.
    [6] 何少林, 李佐唐, 张苏平等, 2007. 甘肃省地震应急指挥技术系统设计与实现. 地震地磁观测与研究, 28(5): 71—79. doi: 10.3969/j.issn.1003-3246.2007.05.015

    He S. L., Li Z. T., Zhang S. P., et al., 2007. Design and implement of technical system for earthquake emergency direction in Gansu Province. Seismological and Geomagnetic Observation and Research, 28(5): 71—79. (in Chinese) doi: 10.3969/j.issn.1003-3246.2007.05.015
    [7] 黄国森, 2012. 乌鲁木齐统计年鉴. 北京: 中国统计出版社.

    Huang G. S., 2012. Urumqi statistical yearbook. Beijing: China Statistics Press. (in Chinese)
    [8] 黄国森, 2013. 乌鲁木齐统计年鉴. 北京: 中国统计出版社.

    Huang G. S., 2013. Urumqi statistical yearbook. Beijing: China Statistics Press. (in Chinese)
    [9] 黄国森, 2014. 乌鲁木齐统计年鉴. 北京: 中国统计出版社.

    Huang G. S., 2014. Urumqi statistical yearbook. Beijing: China Statistics Press. (in Chinese)
    [10] 姜立新, 吴天安, 刘在涛等, 2004. 地震现场应急指挥技术系统的结构与设计. 地震, 24(3): 35—41. doi: 10.3969/j.issn.1000-3274.2004.03.006

    Jiang L. X., Wu T. A., Liu Z. T., et al., 2004. Structure and design of emergency command system in earthquake site. Earthquake, 24(3): 35—41. (in Chinese) doi: 10.3969/j.issn.1000-3274.2004.03.006
    [11] 李凯, 张涛, 2018. 基于组合插值的GM(1,1)模型背景值的改进. 计算机应用研究, 35(10): 2994—2999. doi: 10.3969/j.issn.1001-3695.2018.10.026

    Li K., Zhang T., 2018. Optimization of background value in GM (1,1) model based on combination interpolation. Application Research of Computers, 35(10): 2994—2999. (in Chinese) doi: 10.3969/j.issn.1001-3695.2018.10.026
    [12] 刘颂, 江立敏, 1999. GM(1,1)模型在上海市区人均居住面积预测中的应用. 住宅科技, (8): 3—5.
    [13] 刘伟, 陈浮, 1999. GM(1,1)模型在南京市人均居住面积预测和关联分析中的应用. 城市问题, (1): 15—18.

    Liu W., Chen F., 1999. Application of GM (1,1) model in the prediction and correlation analysis of per capita living area in Nanjing. Urban Problems, (1): 15—18. (in Chinese)
    [14] 卢永坤, 代博洋, 庞卫东等, 2011. 云南地区房屋建筑面积的统计和调查结果. 地震研究, 34(4): 533—537. doi: 10.3969/j.issn.1000-0666.2011.04.021

    Lu Y. K., Dai B. Y., Pang W. D., et al., 2011. Statistical and investigative result of buildings in Yunnan. Journal of Seismological Research, 34(4): 533—537. (in Chinese) doi: 10.3969/j.issn.1000-0666.2011.04.021
    [15] 马建, 常想德, 黄帅堂等, 2020. 无人机摄影技术在精河地震房屋震害定量评估中的应用. 震灾防御技术, 15(1): 208—215. doi: 10.11899/zzfy20200121

    Ma J., Chang X. D., Huang S. T., et al., 2020. Application of UAV photography technology in quantitative assessment of building damage of the Jinghe Earthquake. Technology for Earthquake Disaster Prevention, 15(1): 208—215. (in Chinese) doi: 10.11899/zzfy20200121
    [16] 潘世锦, 2015. 乌鲁木齐统计年鉴. 北京: 中国统计出版社.

    Pan S. J., 2015. Urumqi statistical yearbook. Beijing: China Statistics Press. (in Chinese)
    [17] 潘世锦, 2016. 乌鲁木齐统计年鉴. 北京: 中国统计出版社.

    Pan S. J., 2016. Urumqi statistical yearbook. Beijing: China Statistics Press. (in Chinese)
    [18] 潘世锦, 2017. 乌鲁木齐统计年鉴. 北京: 中国统计出版社.

    Pan S. J., 2017. Urumqi statistical yearbook. Beijing: China Statistics Press. (in Chinese)
    [19] 潘世锦, 2018. 乌鲁木齐统计年鉴. 北京: 中国统计出版社.

    Pan S. J., 2018. Urumqi statistical yearbook. Beijing: China Statistics Press. (in Chinese)
    [20] 潘世锦, 2019. 乌鲁木齐统计年鉴. 北京: 中国统计出版社.

    Pan S. J., 2019. Urumqi statistical yearbook. Beijing: China Statistics Press. (in Chinese)
    [21] 彭振斌, 张闯, 彭文祥等, 2017. GM(1,1)模型背景值构造的不同方法与应用. 东北大学学报(自然科学版), 38(6): 869—873. doi: 10.12068/j.issn.1005-3026.2017.06.022

    Peng Z. B., Zhang C., Peng W. X., et al., 2017. Different structure methods and application of background value in GM (1,1) model. Journal of Northeastern University (Natural Science), 38(6): 869—873. (in Chinese) doi: 10.12068/j.issn.1005-3026.2017.06.022
    [22] 沈艳, 尹金姗, 韩帅等, 2019. 基于数值积分公式的GM(1,1)模型优化研究. 计算机工程与应用, 55(24): 41—45. doi: 10.3778/j.issn.1002-8331.1812-0390

    Shen Y., Yin J. S., Han S., et al., 2019. Research and its optimization of GM (1,1) model based on numerical integration formula. Computer Engineering and Applications, 55(24): 41—45. (in Chinese) doi: 10.3778/j.issn.1002-8331.1812-0390
    [23] 王伟, 2011. 乌鲁木齐统计年鉴. 北京: 中国统计出版社.

    Wang W., 2011. Urumqi statistical yearbook. Beijing: China Statistics Press. (in Chinese)
    [24] 王宇, 敬莉, 2016. 基于灰色GM(1, 1)模型和一元线性回归的人口发展趋势预测——以新疆南疆三地州为例. 西部学刊, (7): 54—59.
    [25] 谢江丽, 李帅, 姚远, 2019. 地震应急数据库中人口数据预测——以乌鲁木齐市为例. 中国地震, 35(2): 389—398. doi: 10.3969/j.issn.1001-4683.2019.02.018

    Xie J. L., Li S., Yao Y., 2019. Prediction of population data in earthquake emergency database - a case study of Urumqi. Earthquake Research in China, 35(2): 389—398. (in Chinese) doi: 10.3969/j.issn.1001-4683.2019.02.018
    [26] 叶淳, 吴翔华, 黄雨婴, 2020. 城镇人均住房建筑面积预测研究——以江苏省为例. 中国房地产, (18): 73—79.
    [27] 曾亮, 2019. 基于振荡序列的灰色GM(1,1|sin)幂模型及其应用. 浙江大学学报(理学版), 46(6): 697—704.

    Zeng L., 2019. Grey GM (1,1|sin) power model based on oscillation sequences and its application. Journal of Zhejiang University (Science Edition), 46(6): 697—704. (in Chinese)
    [28] 赵卓峰, 杨宗润, 2017. 基于残差修正GM(1,1)模型的车流量预测. 计算机科学, 44(4): 96—99, 130. doi: 10.11896/j.issn.1002-137X.2017.04.021

    Zhao Z. F., Yang Z. R., 2017. Traffic flow forecast based on residual modification GM (1,1) model. Computer Science, 44(4): 96—99, 130. (in Chinese) doi: 10.11896/j.issn.1002-137X.2017.04.021
    [29] 郑坚, 陈斌, 2018. 基于时间权重序列的GM(1,1)初始条件优化模型. 控制与决策, 33(3): 529—534.

    Zheng J., Chen B., 2018. Initial condition optimization of GM (1,1) model based on time weighted sequence. Control and Decision, 33(3): 529—534. (in Chinese)
    [30] 朱明, 王志荣, 梁华等, 2017. 基于GM(1,1)的残差修正模型的电梯故障率预测. 安全与环境学报, 17(5): 1701—1704.

    Zhu M., Wang Z. R., Liang H., et al., 2017. Prediction of the elevator failure rate based on the residual error correcting model of GM (1,1). Journal of Safety and environment, 17(5): 1701—1704. (in Chinese)
  • 加载中
图(3) / 表(12)
计量
  • 文章访问数:  191
  • HTML全文浏览量:  74
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-15
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回