• ISSN 1673-5722
  • CN 11-5429/P

DEM分辨率对提取东北地区坡度的影响研究

刘佳轩 高瑞 师黎静

刘佳轩,高瑞,师黎静,2021. DEM分辨率对提取东北地区坡度的影响研究. 震灾防御技术,16(2):237−244. doi:10.11899/zzfy20210202. doi: 10.11899/zzfy20210202
引用本文: 刘佳轩,高瑞,师黎静,2021. DEM分辨率对提取东北地区坡度的影响研究. 震灾防御技术,16(2):237−244. doi:10.11899/zzfy20210202. doi: 10.11899/zzfy20210202
Liu Jiaxuan, Gao Rui, Shi Lijing. Research on the Influence of DEM Resolution on the Slope Extraction in Northeast, China[J]. Technology for Earthquake Disaster Prevention, 2021, 16(2): 237-244. doi: 10.11899/zzfy20210202
Citation: Liu Jiaxuan, Gao Rui, Shi Lijing. Research on the Influence of DEM Resolution on the Slope Extraction in Northeast, China[J]. Technology for Earthquake Disaster Prevention, 2021, 16(2): 237-244. doi: 10.11899/zzfy20210202

DEM分辨率对提取东北地区坡度的影响研究

doi: 10.11899/zzfy20210202
基金项目: 国家重点研发计划(2018YFC1504601);国家自然科学基金面上项目(51978635)
详细信息
    作者简介:

    刘佳轩,男,生于1995年。硕士研究生。主要从事工程抗震方面的研究。E-mail:liujiaxuanhit@163.com

    通讯作者:

    高瑞,男,生于1993年。硕士研究生。主要从事工程抗震方面的研究。E-mail:gaoruihy@163.com

Research on the Influence of DEM Resolution on the Slope Extraction in Northeast, China

  • 摘要: 目前国内外广泛采用的坡度-等效剪切波速关系模型中,坡度主要基于30″分辨率数字高程数据的提取。DEM分辨率对坡度的提取具有重要影响,且对于不同地区、地貌单元的影响不同。本文以我国东北地区1″、3″、30″分辨率DEM为基础,分别提取研究区域内公里网格点的百分比坡度,分析不同分辨率下提取坡度差异的原因。区分平原、丘陵和山地统计分析坡度随分辨率变化特征,通过比较多种拟合模型的拟合优度和坡度分级平均相对差值,给出不同分辨率下的最佳坡度转换关系。研究结果表明,坡度体现计算面积的平均特性,随着分辨率的增大,栅格计算面积减小,导致坡度有所差异,区域坡度变化越大差异越大;在我国东北地区,随着DEM分辨率的降低,坡度-频率分布曲线向低坡度段移动,且均值、方差及值域变小,不同地貌的坡度-频率分布曲线向低坡度方向移动,且峰值区域变窄,其中平原地貌变化趋势性显著,丘陵次之,山地最小;平原及山地地貌最佳坡度拟合为线性拟合,丘陵地貌下1″、3″与30″分辨率下最佳坡度拟合分别为线性拟合和多项式拟合。
  • 图  1  东北地区不同分辨率下高程数据模型图

    Figure  1.  Elevation maps of 1 arc second, 3 arc second, and 30 arc second resolution in the Northeast, China

    图  2  计算高程梯度变化率的像元窗口

    Figure  2.  3×3 unit schematic diagram of slope calculation point

    图  3  东北地区不同分辨率下坡度图

    Figure  3.  Slope maps of 1 arc second, 3 arc second, and 30 arc second resolution in the Northeast, China

    图  4  不同DEM分辨率下的坡度统计

    Figure  4.  Slope statistics of different DEM resolutions

    图  5  地貌分布图

    Figure  5.  Landform distribution map

    图  6  不同分辨率下不同地貌单元坡度-频率分布曲线

    Figure  6.  Slope-frequency distribution curves of different topography at different resolutions

    图  7  不同地貌单元不同分辨率下坡度转换结果

    Figure  7.  Conversion results of DEM slopes with different resolutions under different landforms

    表  1  不同地貌单元回归模型拟合参数及评价参数(1″与30″分辨率下)

    Table  1.   Fitting and evaluation parameters of regression models for different landforms (1 arc second and 30 arc second)

    地貌单元类型拟合模型拟合参数R2ΔmeanK
    abcd
    平原线性函数00.085 630.313 400.535 70.585 0
    多项式函数0.114 600−0.154 800.090 5000.322 200.763 90.421 7
    幂函数0.047 1600.658 5000.080 000.892 30.089 6
    丘陵线性函数00.132 570.552 500.320 81.722 2
    多项式函数0.259 270−0.736 800.711 4600.610 810.486 51.255 5
    幂函数0.043 2490.329 2300.077 80.842 30.092 3
    山地线性函数00.199 240.598 490.345 11.734 2
    多项式函数0.445 110−0.996 520.686 5900.687 300.714 80.961 5
    幂函数0.079 9900.287 7300.092 450.965 30.095 7
    下载: 导出CSV

    表  2  不同地貌单元回归模型拟合参数及评价参数(3″与30″分辨率下)

    Table  2.   Fitting and evaluation parameters of regression models for different landforms (3 arc second and 30 arc second)

    地貌拟合模型拟合参数R2ΔmeanK
    abcd
    平原线性函数00.180 00.313 400.106 72.937 20
    多项式函数0.485 0−1.476 01.64600.322 200.324 40.993 20
    幂函数0.160 00.713 000.080 000.525 90.152 10
    丘陵线性函数00.246 00.552 500.385 11.434 70
    多项式函数0.449 0−1.695 02.33700.610 810.410 11.489 40
    幂函数0.082 10.465 000.077 800.579 90.134 10
    山地线性函数00.279 80.598 490.354 11.690 10
    多项式函数0.635 0−2.104 02.36600.687 300.716 00.959 90
    幂函数0.103 60.360 200.092 450.782 70.118 11
    下载: 导出CSV

    表  3  不同地貌单元不同分辨率下坡度转换公式

    Table  3.   The slope conversion formula of different resolution DEM for different landforms

    地貌单元类型与30″的转换关系
    1″(i=1″)3″(i=3″)
    平原$ {S_{30}} = {\text{0}}{\text{.085 63}}{S_{{i}}} $$ {S_{30}} = {\text{0}}{\text{.18}}{S_{{i}}} $
    丘陵$ {S_{30}} = {\text{0}}{\text{.132 57}}{S_{{i}}} $$ {S_{30}} = {\text{0}}{\text{.449}}{S_{{i}}}{{ - 1}}{\text{.695}}{S_{{i}}}^{\text{2}}{\text{ + 2}}{\text{.337}}{S_{{i}}}^{\text{3}} $
    山地$ {S_{30}} = {\text{0}}{\text{.199 24}}{S_{{i}}} $$ {S_{30}} = {\text{0}}{\text{.279 8}}{S_{{i}}} $
    下载: 导出CSV
  • [1] 李昕蕾, 2020. 基于多因素的区域场地分类方法研究. 哈尔滨: 中国地震局工程力学研究所.

    Li X. L., 2020. Regional site classification method based on multiple factors. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese)
    [2] 刘飞, 范建容, 崔兆岩等, 2019. 基于DEM分形特征的坡度尺度变换模型. 山地学报, 37(1): 129—136

    Liu F., Fan J. R., Cui Z. Y., et al., 2019. A model of re-scaling slope based on DEM fractal feature. Mountain Research, 37(1): 129—136. (in Chinese)
    [3] 刘利峰, 2018. DEM分辨率对白马小流域坡度与坡向提取的影响. 山西水土保持科技, (2): 10—12 doi: 10.3969/j.issn.1008-0120.2018.02.005

    Liu L. F., 2018. DEM resolving capability influence on extract slope and aspect in Baima minor watershed. Soil and Water Conservation Science and Technology in Shanxi, (2): 10—12. (in Chinese) doi: 10.3969/j.issn.1008-0120.2018.02.005
    [4] 刘晓, 赵荣, 梁勇等, 2017. 顾及地貌与DEM分辨率的坡度算法适应性研究. 测绘科学, 42(3): 29—34

    Liu X., Zhao R., Liang Y., et al., 2017. Research of algorithms for deriving slope based on different geomorphic types and DEM resolution. Science of Surveying and Mapping, 42(3): 29—34. (in Chinese)
    [5] 乔之轩, 2019. 基于DEM的多分辨率水文特征提取. 北京: 北京林业大学.

    Qiao Z. X., 2019. Multi-resolution hydrological feature extraction based on DEM. Beijing: Beijing Forestry University. (in Chinese)
    [6] 师动, 朱奇峰, 杨勤科等, 2020. DEM分辨率对坡度算法选择影响的分析. 山地学报, 38(6): 935—944

    Shi D., Zhu Q. F., Yang Q. K., et al., 2020. DEM resolution influence on slope algorithm selection. Mountain Research, 38(6): 935—944. (in Chinese)
    [7] 史大成, 2009. 基于GIS的场地分类新方法研究. 哈尔滨: 中国地震局工程力学研究所.

    Shi D. C., 2009. Study on new methods of site classification based on GIS. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese)
    [8] 土祥, 王春梅, 庞国伟等, 2018. 黄土丘陵沟壑区坡度尺度效应空间分异分析. 山地学报, 36(6): 964—972

    Tu X., Wang C. M., Pang G. W., et al., 2018. On the spatial differentiation of scale effect of slopes in Loess Hill and Gully Region, China. Mountain Research, 36(6): 964—972. (in Chinese)
    [9] 王英, 龚家国, 贾仰文等, 2019. 基于不同分辨率DEM提取坡度值的转换关系研究. 水利水电技术, 50(8): 45—51

    Wang Y., Gong J. G., Jia Y. W., et al., 2019. Study on conversion relationship of slope information extracted from different resolution DEM. Water Resources and Hydropower Engineering, 50(8): 45—51. (in Chinese)
    [10] 吴效勇, 2019. 基于多因素的地震影响场研究. 北京: 中国地震局地震预测研究所.

    Wu X. Y., 2019. Study on seismic influence field based on multi-factors. Beijing: Institute of Earthquake Forecasting, China Earthquake Administration. (in Chinese)
    [11] Grohmann C. H., 2015. Effects of spatial resolution on slope and aspect derivation for regional-scale analysis. Computers & Geosciences, 77: 111—117.
    [12] Horn B. K. P., 1981. Hill shading and the reflectance map. Proceedings of the IEEE, 69(1): 14—47. doi: 10.1109/PROC.1981.11918
    [13] Mukherjee S., Mukherjee S., Garg R. D., et al., 2013. Evaluation of topographic index in relation to terrain roughness and DEM grid spacing. Journal of Earth System Science, 122(3): 869—886. doi: 10.1007/s12040-013-0292-0
    [14] Olaya V., 2009. Basic land-surface parameters. Developments in Soil Science, 33: 141—169.
    [15] Thompson E. M., Wald D. J., Worden C. B., 2014. A Vs30 map for California with geologic and topographic constraints. Bulletin of the Seismological Society of America, 104(5): 2313—2321. doi: 10.1785/0120130312
    [16] Thornley J. H. M., 1976. Mathematical models in plant physiology. London: Academic Press, 86—110.
    [17] Wald D. J., Earle P. E., Lin K. W., et al., 2006. Challenges in rapid ground motion estimation for the prompt assessment of global urban earthquakes. Bulletin of the Earthquake Research Institute, 81: 273—281.
    [18] Walker J. P., Willgoose G. R., 1999. On the effect of digital elevation model accuracy on hydrology and geomorphology. Water Resources Research, 35(7): 2259—2268. doi: 10.1029/1999WR900034
    [19] Wang C. M., Yang Q. K., Guo W. L., et al., 2012. Influence of resolution on slope in areas with different topographic characteristics. Computers & Geosciences, 41: 156—168.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  75
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-26
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回