Numerical Simulation of Radon Concentration in Soil of Hehuan Road in Tan Lu Fault Suqian Segment
-
摘要: 沿郯庐断裂带宿迁段合欢路布设土壤氡测线并对测得的数据进行分析研究,结果表明研究区域内土壤氡探测结果对断裂带位置、断层类型和特征有较好的指示性。在已知场地地质构造参数、地层岩性特征的基础上,建立土壤氡迁移模型。建立模型时识别了断裂类型和覆盖层分层特征,并讨论了断层内部结构与氡浓度取值,使模型与实际情况相等。数值模拟结果印证了土壤氡异常峰区间在圈定断裂位置和断层破碎带中的重要作用,揭示了氡在不同覆盖层中的迁移速度,并定量解释了合欢路场地断层土壤氡异常的成因。Abstract: Based on the known geological structural parameters and stratigraphic lithology characteristics of the HeHuan road in the Suqian section of the Tan Lu fault, a model of soil radon migration is established. The type of fracture and the layered characteristics of overburden are identified during the model establishment, and we discussed the internal structure of the fault and the radon concentration.This makes the model more consistent with the actual situation.The calculated numerical simulation results are very close to the measured radon curve in soil. The result quantitatively explains the main causes of anomalies in soil radon measurement. It’s confirmed that the abnormal form of soil radon is mainly determined by geological structure, the abnormal values are related to the concentration of cross section and the characteristics of overburden rock formation, the migration velocity of radon in different overburden is different, the range of abnormal soil radon peak can indicate the position of breakpoint and the range of relative fracture.
-
Key words:
- Soil radon /
- Radon migration /
- TanLu fault /
- Active fault /
- Numerical simulation
-
引言
2017年5月11日,新疆维吾尔自治区喀什地区塔什库尔干县发生MS 5.5地震,地震造成8人死亡、31人受伤,造成房屋及设施破坏,直接经济损失共20.05亿元(侯建盛等,2017)。
此次地震灾区主要涉及喀什地区塔什库尔干县科克亚尔柯尔克孜民族乡、塔合曼乡、提孜那普乡、塔什库尔干乡、班迪尔乡、巴扎达什牧林场(行政隶属班迪尔乡)、瓦恰乡、达布达尔乡等9个乡镇。灾区面积3288km2,受灾人口26486人,9285户,由于房屋毁坏和较大程度破坏造成失去住所人数共计16194人,4753户。
1. 地震构造背景及基本情况
1.1 地震烈度
此次地震震中位于新疆喀什地区塔什库尔干县塔什库尔干乡,宏观震中位于塔什库尔干乡库孜滚村,为Ⅷ度异常点。通过对灾区9个乡(镇、场)的69个调查点展开实地调查,得到的烈度图等震线长轴呈北北西走向分布(图 1)。Ⅶ度区面积227km2,长轴28km,短轴8km,涉及塔什库尔干镇(含县城)和塔什库尔干乡;Ⅵ度区面积3061km2,长轴100km,短轴43km,涉及科克亚尔柯尔克孜民族乡、塔合曼乡、提孜那普乡、塔什库尔干乡、班迪尔乡、巴扎达什牧林场(行政隶属班迪尔乡)、瓦恰乡、达布达尔乡等8个乡(场);Ⅵ度区及以上总面积为3288km2。
1 新疆地震局,2017.新疆塔什库尔干5.5级地震灾害损失评估报告.
1.2 发震构造
震区位于帕米尔高原塔什库尔干断陷谷地,该谷地是由青藏高原西北帕米尔构造结内部塔什库尔干拉张系晚新生代以来的拉张作用形成的盆地,其南北狭长,东西分布海拔为4000—5000m的高山。
震区内塔什库尔干断裂成型于华力西时期,有长期的演化发育史。大部分在喜马拉雅期重新复活,该断裂控制着塔什库尔干盆地的形成与演化,此次塔什库尔干MS 5.5地震就发生在塔什库尔干断裂带上(图 2)。
1 新疆地震局,2017.新疆塔什库尔干5.5级地震灾害损失评估报告.
从本次地震的新构造运动分区背景来看,新近纪以来震区所处的西昆仑隆起区隆起幅度大致在2—7km,该隆起区第四纪以来的隆起幅度和速率分别为1200—1700m和10—13mm/a。
1.3 震区场地条件
震区位于帕米尔东北—西昆仑区段,西昆仑山体呈北西—南东走向,平均海拔5000—6000m,主要山峰偏于西部。主峰公格尔山海拔7649m,慕士塔格山为7509m,山体宽厚高大,南北不对称,北坡长而陡峭,与海拔1000m多的塔里木盆地相邻,高差4000m。帕米尔高原实际上并非平坦的高原面,由几组山脉和山脉之间宽阔的谷地和盆地构成。
此次震中位于塔什库尔干谷地内,发育有塔什库尔干河,震区附近谷地与两侧高差700—1200m,谷地总体走向近南北,宽数千米,呈狭长状,谷地两岸冰碛物堆积及冲洪积堆积发育,村庄沿河流阶地及山前冲洪积扇分布(刘军等,2014),该地貌单元内场地类别为Ⅰ类,如图 3所示。
2. 震害特征分析
2.1 地震灾害特征分析
本次地震涉及影响范围内的房屋结构类型主要包括简易房(土石木结构)、砖混结构、砖木结构及少量的框架结构。简易房按照承重墙体可分成两类,其中一类主要分布在山前洪积扇倾斜平原地带,多为当地居民就地取材而建,屋顶结构为先搭建房梁后在其上搁置短木条作为椽子,在椽子上铺设草席后覆盖房泥,部分老旧房屋屋顶房泥较厚,墙体由卵石、粉土砌筑而成,粘结强度极差,加之施工质量和场地条件的影响,造成一定数量的毁坏和大面积破坏,是导致本次地震造成人员伤亡的主要原因;另一类主要分布在塔什库尔干河两岸阶地上,此类房屋多为土坯砌筑而成。由于该地区经济落后,交通极为不便,建造成本高,在县城存在大量2000年左右建设的土石木房屋。在地震中,第一类房屋大面积倒塌,房屋倒塌基本为整体性倾覆,第二类土坯房倒塌相对略少,多为局部倒塌,2种不具抗震性能的房屋破坏面积较严重,计算时均列入土石木结构房屋,该类房屋在乡镇Ⅶ度区毁坏达39.1%,在县城的Ⅶ度区毁坏达24.3%。震区各类结构房屋面积如表 1所示。
表 1 震区各类结构房屋面积(单位:m2)Table 1. Total areas of various kinds of structures in the earthquake area (unit: m2)行政区 土木结构面积 砖木结构面积 砖混结构面积 框架结构面积 总面积 县城 9000 114700 171135 325700 620535 乡镇 814770 46954 47636 0 909360 乡镇中的砖木结构房屋为近年新建居住用房,设有构造措施,抗震能力好;老旧砖木房屋未经抗震设防,砌筑工艺和质量较差。震区老旧砖木房屋严重破坏现象为房屋承重墙体大面积剪切裂缝或外闪,局部屋顶塌落;中等破坏现象主要为墙体斜向或竖向开裂,宽度约1mm,但延伸长度较长,由墙体顶部延伸至底部。Ⅶ度区严重破坏以上达24.3%,但无整体倒塌房屋,该类结构房屋未造成人员伤亡。
砖混结构房屋主要是乡(镇)公用房屋,或县城的居住用房。2010年后建设的砖混结构房屋抗震能力较好,地震后出现一定数量墙体细微开裂。2000年前建设砖混结构办公楼设防烈度低,在地震中造成一定数量严重破坏。震区典型房屋灾害如图 4所示。
框架结构多为2010年后新建办公用房,抗震能力好,未产生结构性破坏,但出现大面积填充墙开裂,修复量大。
通过对震区69个调查点进行均匀抽样调查(孙景江等,2011),最后得到本次地震震区房屋破坏比,如表 2所示。
表 2 震区各类结构房屋的破坏情况Table 2. Statistial results of building damages of various structures in the earthquake area行政区 单位 毁坏 严重破坏 中等破坏 轻微破坏 破坏合计 不具备修复价值 县城 m2 26156 54751 74645 341811 497363 99568 间 1308 2738 3732 17091 24869 4979 户 327 685 933 4273 6218 1245 乡镇 m2 80958 151041 194444 260836 687279 280610 间 4048 7552 9722 13042 34364 14031 户 1012 1888 2431 3261 8592 3508 2.2 基础设施与生命线工程的破坏
在市政设施方面,地震造成42km供排水管道、34km供暖管道和4座供热站受损,造成供水厂、污水厂氧化池及构筑物受损;交通系统方面,共86km道路损毁,350m隧道严重损坏,9座桥涵、135处涵洞和20km道路防护损坏。塔什库尔干县村庄道路局部塌陷情况如图 5所示。
在水利系统方面,地震造成114km水渠受损,对震区农作物灌溉造成一定影响。在达布达尔乡,草场水渠破坏造成库什吾尼可尔村、恰特尔塔什村、土拉村及库什吾尼可尔村等30余户、约0.12km2棉作地灌溉受影响,对震区居民的收入造成一定影响,恢复时间需要1个月左右。塔什库尔干县达布达尔乡阿特加依里村草场水渠地基失稳,在地震作用下完全破坏(图 6)。
在电力系统方面,地震造成63座(110kV、220kV)塔基局部受损,1座110kV变电所和11座35kV变电所受损。电力系统破坏造成塔什库尔干乡布依阿勒村、加隆且特村和吐尔得库勒村等近60户居民用电中断,经过5天的抢修,断电区域已经恢复供电。
在通讯系统方面,地震造成移动、联通、电信公司7个核心机房受损(图 7),3座铁塔损坏,5km光缆倒伏。通讯系统破坏造成塔什库尔县城辖区内部分居民通信不稳定、少数居民固定电话不能呼入进户,经过2天的紧急抢修,通讯基本恢复正常。
3. 安居富民工程减灾效益分析
在近年来新疆发生的历次破坏性地震中,震区建设的安居富民工程和抗震安居房(张勇,2005)在减少人员伤亡和经济损失中发挥了显著作用(谭明等,2014)。在此次地震中,塔什库尔干县绝大部分倒塌的房屋为老旧的简易房,造成人员伤亡的房屋均为土石木房屋,宏观震中附近的安居富民房屋均完好。新疆大规模实施安居富民工程后,建造的农居符合设计规范要求,无一受到毁坏或者严重破坏,抗震性能得到检验(唐丽华等,2016)。
震后通过对灾区进行抽样调查,统计了安居房及安居工程改造的土木、砖木及砖混结构房屋所占比例,并根据灾区安居房未改造前的土木、砖木及砖混结构房屋数据,结合新疆地区安居富民房震害矩阵,对塔什库尔干5.5级地震的减灾效益进行了计算和分析。在地震灾害损失评估中,将抗震安居房和安居富民房面积替换为改造前的简易房屋面积,计算抗震房减灾效益(刘军等,2016),具体数据见表 3。
表 3 塔什库尔干县震区安居富民房减灾效益对比Table 3. Statistical results of reducing damage with anti-seismic living room project类别 未进行安居工程改造损失 实际损失 减少损失 受伤人数 68 31 37 死亡人数 34 8 26 受灾人数 53438 26486 26952 房屋直接经济损失/亿元 68.8 20.05 38.75 需紧急安置人数 36783 16194 20589 恢复重建费用/亿元 88.3 29.34 42.96 4. 结语
(1)此次地震属于浅源中强地震,震源深度8km,地面振动强。极震区位于地震断裂上方,灾害破坏较集中,对震中附近的库孜滚村造成了毁灭性破坏,与同级别地震相比较灾情较重。
(2)塔什库尔干盆地是1个冰碛堆积盆地,其地下沉积物质具有强烈的不均一性,这种分选性极差的场地地基条件对地震动有一定放大效应,因此造成县城城区内的砖混结构房屋出现了不同程度的破坏,多数框架结构房屋填充墙大面积开裂。
(3)灾区位于帕米尔高原,自然条件恶劣,资源匮乏,经济落后,建设成本高,自建房屋质量差,抗震能力低,也是本次地震震级不大、震害较重的重要原因。
-
表 1 覆盖层中氡迁移相关参数
Table 1. Parameters related to radon migration in overburden
土壤性质 孔隙度e/% 扩散系数D/10−2 cm2·s−1 有效扩散系数D*/cm2·s−1 对流速度V/10−4 cm·s−1 砂 40.0 4.50~7.00 0.110~0.175 8.0 疏松沉积物 20.0 2.00~2.50 0.100~0.125 6.8 白黏土 59.3 1.53 0.023 4.0 砂质黏土 10.8 1.09 0.100 4.2 表 2 土壤氡测线探测结果与浅层人工地震探测结果
Table 2. Detection results of soil radon line and shallow seismic
土壤氡测线
分段名称测线长度
/m最大值
/kBq·m−3最小值
/kBq·m−3平均值
/kBq·m−3异常下限
/kBq·m−3异常
形态异常峰区
间间距/m异常区间
/m浅层人工
地震测线分支断裂
编号断点位置
/m断错
性质倾向
倾角/°上断点
埋深/mSG1 360 1.09 1.09 9.40 23.46 单峰 - 1490~1545 S F5-2 1508 正断 E70 6 SG2 360 0.99 0.99 4.11 7.77 双峰 23 1970~2022 S F5-1 1988 正断 W65 18 表 3 断点上覆盖层参数
Table 3. Overburden parameters on fault point
断点 断点上覆盖层参数 覆盖层 深度/m 厚度/m 描述 对流速度/cm·s−1 有效扩散系数/cm2·s−1 断裂F5~2断点 1 0~4 4 灰黑、灰黄色黏土,质软 4.5 0.06 2 4~10 6 黄棕、青灰色条纹砂质黏土,含有锰结核和姜结石 6.0 0.11 3 10~24 14 黄棕、青灰色黏土 4.0 0.05 4 24~32 8 黄棕、灰黄色砂质黏土 5.0 0.08 断裂F5-1断点 1 0~2.0 2 灰黑色,黑色黏土,质软 4.5 0.06 2 2.0~3.8 1.8 棕红色,局部有灰色粗砂质黏土,含有钙质结核 6.0 0.11 3 3.8~4.5 0.7 青灰色粉砂质黏土,质软 5.0 0.08 4 4.5~5.8 1.3 棕色、褐棕色黏土,含有铁锰结核 4.0 0.04 -
[1] 晁洪太, 李家灵, 崔昭文等, 1994. 郯庐断裂带中段全新世活断层的特征滑动行为与特征地震. 内陆地震, 8(4): 297—-304.Chao H. T., Li J. L., Cui Z. W., et al., 1994. Characteristic slip behavior of the holocene fault in the central section of the Tanlu fault zone and the characteristic earthquakes. Inland Earthquake, 8(4): 297—304. (in Chinese) [2] 车用太, 刘耀炜, 何钄, 2015. 断层带土壤气中H2观测——探索地震短临预报的新途径. 地震, 35(4): 1—10.Che Y. T., Liu Y. W., He L., 2015. Hydrogen monitoring in fault zone soil gas—a new approach to short/immediate earthquake prediction. Earthquake, 35(4): 1—10. (in Chinese) [3] 戴波, 赵启光, 张敏等, 2020. 土壤氡对郯庐断裂宿迁段F5断裂探测和活动性的研究. 地震工程学报, 42(6): 1479—1486.Dai B., Zhao Q. G., Zhang M., et al., 2020. Detection and activity of the fault F5 in Suqian segment of the Tanlu fault by using soil radon. China Earthquake Engineering Journal, 42(6): 1479—1486. (in Chinese) [4] 杜建国, 宇文欣, 李圣强等, 1998. 八宝山断裂带逸出氡的地球化学特征及其映震效能. 地震, 18(2): 155—162.Du J. G., Yu W. X., Li S. Q., et al., 1998. The geochemical characteristics of escaped radon from the Babaoshan fault zone and its earthquake reflecting effect. Earthquake, 18(2): 155—162. (in Chinese) [5] 付晓飞, 方德庆, 吕延防等, 2005. 从断裂带内部结构出发评价断层垂向封闭性的方法. 地球科学——中国地质大学学报, 30(3): 328—336.Fu X. F., Fang D. Q., Lü Y. F., et al., 2005. Method of evaluating vertical sealing of faults in terms of the internal structure of fault zones. Earth Science—Journal of China University of Geosciences, 30(3): 328—336. (in Chinese) [6] 葛良全, 邹功江, 谷懿等, 2012. 非稳态条件下壤中氡浓度数理模型探讨. 成都理工大学学报(自然科学版), 39(3): 323—327.Ge L. Q., Zou G. J., Gu Y., et al., 2012. Research on mathematic-physical model of radon migration in soil under unsteady conditions. Journal of Chengdu University of Technology (Science & Technology Edition), 39(3): 323—327. (in Chinese) [7] 柯云龙, 刘耀炜, 张磊等, 2018. 川滇地震预报实验场高精度氢观测台阵建设分析. 地震, 38(3): 35—48.Ke Y. L., Liu Y. W., Zhang L., et al., 2018. Establishment and analysis of the high-precision hydrogen observation array in China earthquake science experiment site. Earthquake, 38(3): 35—48. (in Chinese) [8] 刘保金, 酆少英, 姬计法等, 2015. 郯庐断裂带中南段的岩石圈精细结构. 地球物理学报, 58(5): 1610—1621. doi: 10.6038/cjg20150513Liu B. J., Feng S. Y., Ji J. F., et al., 2015. Fine lithosphere structure beneath the middle-southern segment of the Tan-Lu fault zone. Chinese Journal of Geophysics, 58(5): 1610—1621. (in Chinese) doi: 10.6038/cjg20150513 [9] 刘洪涛, 2018. 土壤氡迁移数值模拟及土壤氡对流速度的研究. 北京: 中国地质大学(北京).Liu H. T., 2018. Study on the numerical simulation of soil radon migration and soil radon convective velocity. Beijing: China University of Geosciences (Beijing). (in Chinese) [10] 刘菁华, 2006. 活断层上覆盖层中氡迁移的数值模拟及反演拟合. 长春: 吉林大学.Liu J. H., 2006. Numerical simulation, inversion fitting of radon migration in the overburden above active fault. Changchun: Jilin University. (in Chinese) [11] 刘耀炜, 任宏微, 2009. 汶川8.0级地震氡观测值震后效应特征初步分析. 地震, 29(1): 121—131. doi: 10.3969/j.issn.1000-3274.2009.01.016Liu Y. W., Ren H. W., 2009. Preliminary analysis of the characteristics of post-seismic effect of radon after the Wenchuan 8.0 earthquake. Earthquake, 29(1): 121—131. (in Chinese) doi: 10.3969/j.issn.1000-3274.2009.01.016 [12] 邵永新, 杨绪连, 李一兵, 2007. 海河隐伏活断层探测中土壤气氡和气汞测量及其结果. 地震地质, 29(3): 627—636.Shao Y. X., Yang X. L., Li Y. B., 2007. The result and measurement of soil gas radon and soil gas mercury in the exploration of Haihe hidden fault. Seismology and Geology, 29(3): 627—636. (in Chinese) [13] 汪成民, 李宣瑚, 1991. 我国断层气测量在地震科学研究中的应用现状. 中国地震, 7(2): 19—30.Wang C. M., Li X. H., 1991. Applications of fracture-gas measurement to the earthquake studies in China. Earthquake Research in China, 7(2): 19—30. (in Chinese) [14] 王江, 李营, 陈志, 2017. 口泉断裂断层气地球化学变化特征及断层活动性. 地震, 37(1): 39—51.Wang J., Li Y., Chen Z., 2017. Gas geochemistry and activity of the Kouquan fault in Shanxi province. Earthquake, 37(1): 39—51. (in Chinese) [15] 吴慧山, 1995. 氡测量方法与应用. 北京: 原子能出版社.Wu H. S., 1995. Methods and applications of radon. Beijing: Atomic Energy Press. (in Chinese) [16] 伍剑波, 张慧, 苏鹤军, 2014. 断层气氡在不同类型覆盖层中迁移规律的数值模拟. 地震学报, 36(1): 118—128.Wu J. B., Zhang H., Su H. J., 2014. Numerical simulation for migration rule of fault gas radon in different overburden. Acta Seismologica Sinica, 36(1): 118—128. (in Chinese) [17] 许汉刚, 范小平, 冉勇康等, 2016. 郯庐断裂带宿迁段F5断裂浅层地震勘探新证据. 地震地质, 38(1): 31—43.Xu H. G., Fan X. P., Ran Y. K., et al., 2016. New evidences of the Holocene fault in Suqian segment of the Tanlu fault zone discovered by shallow seismic exploration method. Seismology and Geology, 38(1): 31—43. (in Chinese) [18] 张慧, 苏鹤军, 李晨桦, 2013. 合作市隐伏断层控制性地球化学探测场地试验. 地震工程学报, 35(3): 618—624.Zhang H., Su H. J., Li C. H., 2013. Field test on the geochemical detection of concealed fault in Hezuo city. China Earthquake Engineering Journal, 35(3): 618—624. (in Chinese) [19] 周慧玲, 苏鹤军, 张慧等, 2018. 基于孕震物理模式的断层气流动监测网络布设技术. 地震工程学报, 40(5): 1052—1060.Zhou H. L., Su H. J., Zhang H., et al., 2018. Mobile monitoring network layout technique for fault gas based on seismogenic mode. China Earthquake Engineering Journal, 40(5): 1052—1060. (in Chinese) [20] 周晓成, 王传远, 柴炽章等, 2011. 海原断裂带东南段土壤气体地球化学特征. 地震地质, 33(1): 123—132.Zhou X. C., Wang C. Y., Chai Z. Z., et al., 2011. The geochemical characteristics of soil gas in the southeastern part of Haiyuan fault. Seismology and Geology, 33(1): 123—132. (in Chinese) [21] Abdoh A., Pilkington M., 1989. Radon emanation studies of the Ile Bizard Fault, Montreal. Geoexploration, 25(4): 341—354. doi: 10.1016/0016-7142(89)90005-7 [22] Baubron J. C., Rigo A., Toutain J. P., 2002. Soil gas profiles as a tool to characterise active tectonic areas: the Jaut Pass example (Pyrenees, France). Earth and Planetary Science Letters, 196(1—2): 69—81. [23] Giammanco S., Gurrieri S., Valenza M., 1998. Anomalous soil CO2 degassing in relation to faults and eruptive fissures on Mount Etna (Sicily, Italy). Bulletin of Volcanology, 60(4): 252—259. doi: 10.1007/s004450050231 [24] Ho C. K., 2008. Analytical risk-based model of gaseous and liquid-phase radon transport in landfills with radium sources. Environmental Modelling & Software, 23(9): 1163—1170. [25] Iakovleva V. S., Ryzhakova N. K., 2003. Spatial and temporal variations of radon concentration in soil air. Radiation Measurements, 36(1—6): 385—388. [26] Janik M., Bossew P., 2016. Analysis of simultaneous time series of indoor, outdoor and soil air radon concentrations, meteorological and seismic data. Nukleonika, 61(3): 295—302. doi: 10.1515/nuka-2016-0049 [27] King C. Y., King B. S., Evans W. C., et al., 1996. Spatial radon anomalies on active faults in California. Applied Geochemistry, 11(4): 497—510. doi: 10.1016/0883-2927(96)00003-0 [28] Lombardi S., Voltattorni N., 2010. Rn, He and CO2 soil gas geochemistry for the study of active and inactive faults. Applied Geochemistry, 25(8): 1206—1220. doi: 10.1016/j.apgeochem.2010.05.006 [29] Toutain J. P., Baubron J. C., 1999. Gas geochemistry and seismotectonics: a review. Tectonophysics, 304(1—2): 1—27. [30] Wakita H., Nakamura Y., Notsu K., et al., 1980. Radon anomaly: a possible precursor of the 1978 Izu-Oshima-Kinkai earthquake. Science, 207(4433): 882—883. doi: 10.1126/science.207.4433.882 [31] Walia V., Yang T. F., Lin S. J., et al., 2013. Temporal variation of soil gas compositions for earthquake surveillance in Taiwan. Radiation Measurements, 50: 154—159. doi: 10.1016/j.radmeas.2012.11.007 [32] Yakovleva V. S., Parovik R. I., 2010. Solution of diffusion–advection equation of radon transport in many-layered geological media. Nukleonika, 55(4): 601—606. [33] Zhang W., Zhang D. S., Wang X. F., et al., 2014. Analysis of mathematical model for migration law of radon in underground multilayer strata. Mathematical Problems in Engineering, 2014: 250852. 期刊类型引用(2)
1. 谌宏伟,杨瑶,黄荷,周慧,彭向训,于莎莎,喻娓厚,李正最,王赵国. 基于氡同位素示踪的洞庭湖区枯水期湖水与地下水交互作用研究. 地学前缘. 2024(02): 423-434 . 百度学术
2. 单友磊,朱红,张加家. 郯庐断裂带宿迁段土壤气氡与断裂活动性关系研究. 内陆地震. 2023(02): 203-209 . 百度学术
其他类型引用(0)
-