Study on the Test Scheme of Shaking Table Test for Subway Station Built in Loess Area
-
摘要:
为得到可靠的试验数据,对黄土场地典型断面地铁车站大型振动台试验方案进行设计与研究。根据试验目的和特点,提出黄土场地与地铁车站动力相互作用模型体系相似设计原则,并基于Bockingham的π定理对模型结构进行相似设计;通过室内试验研究模型材料配合比、力学特性及模型制作技术;采用有限元-无限元耦合数值建模方法,分析黄土场地地铁车站地震响应,基于数值模拟结果对振动台试验中的传感器布设方案进行研究;根据西安及周边地区地震环境特点,确定振动台试验输入地震动与加载方案。研究结果表明,试验模型结构宏观震害与数值模拟结果较吻合。本研究可为黄土场地地铁车站、地铁隧道及地下商业街等地下结构振动台试验方案设计与深入研究提供参考。
Abstract:For obtaining reliable results, the test scheme of shaking table test for subway station built in loess area was designed and analyzed. According to the aim and characteristic of model test, the principles of scale-model design considering the dynamic interaction between loess and structure were determined and the scale ratios of model system were deduced based on theorem of Bockingham π. The mix proportions, mechanical properties of model material and the construction technology of model structure were studied by experiments. In addition, the rules of seismic responses of model system were analyzed using finite-infinite element method and the sensors position of model test was determined to acquire the key data according to the results of numerical simulation. Then the input ground motions and loading scheme of model test were studied based on the seismic environment around Xi’an. The macroscopic seismic damages during shaking table test are similar with numerical analysis results. This paper can provide an important reference for the test design and antiseismic research of underground structures by shaking table tests.
-
Key words:
- Loess area /
- Ssubway station /
- Shaking table test /
- Design of scale model /
- Loading scheme /
- Numerical analysis
-
表 1 模型相似常数
Table 1. Similar constants of test model
性能 物理量 相似关系 相似常数 性能 物理量 相似关系 相似常数 几何特征 长度l Sl 1/30 荷载性能 集中力F SF=SσSl2 2.22×10−4 面积A SA=Sl2 1/900 线荷载q Sq=SσSl 6.67×10−3 线位移s Ss 1/30 面荷载p Sp=Sσ 1/5 角位移θ Sθ=Sσ/SE 1 力矩M SM=SσSl3 7.41×10−6 材料性能 弹性模量E SE 1/5 动力特征 时间t St=Sl0.5 Sa−0.5 0.13 应力σ Sσ=SE 1/5 频率f Sf=Sl−0.5 Sa0.5 7.75 应变ε Sε=Sσ/SE 1 速度v Sv=Sl0.5 Sa0.5 0.26 密度ρ Sρ=SE/(SlSa) 3.0 阻尼c Sc=SσSl1.5 Sa−0.5 8.61×10−4 质量m Sm=SσSl2/Sa 1.11×10−4 加速度a Sa 2.0 表 2 土样的物理指标
Table 2. Physical parameters of soil samples
重度/kN·m−3 干密度/g·cm−3 含水量/% 液限/% 塑限/% 塑性指数 黏聚力/kPa 摩擦角/° 孔隙比 16.7 1.41 22.7 34.2 20.3 13.9 29.0 21.0 0.973 表 3 黄土场地土层组成与力学参数
Table 3. Soil composition and mechanics parameters of loess site
土层名称 深度/m 特征描述 密度/kg·m−3 剪切波速/m·s−1 泊松比 黏聚力/kPa 内摩擦角φ/(º) 新黄土(Q3eol) 0~6 褐黄色,硬塑 1 960 205 0.26 27 24.5 新黄土(Q3eol) 6~13 褐黄色,硬塑 2 010 241 0.26 27 24.0 古土壤(Q3el) 13~17 红褐色,硬塑 1540 271 0.26 45 24.0 老黄土(Q2eol) 17~24 黄褐色,可塑 1670 298 0.29 35 23.0 古土壤(Q3el) 24~36 红褐色,可塑 1760 317 0.29 44 23.0 老黄土(Q2eol) 36~44 黄褐色,可塑 2060 339 0.30 36 22.5 古土壤(Q2el) 44~56 红褐色,可塑 2 000 383 0.29 44 23.0 老黄土(Q2eol) 56~64 褐黄色,可塑 1 970 434 0.31 27 23.0 老黄土(Q2eol) 64~70 褐黄色,可塑 1 980 466 0.31 27 23.0 表 4 试验加载工况
Table 4. Loading conditions for shaking table test
序号 地震动 工况 加速度峰值/g 序号 地震动 工况 加速度峰值/g 1 白噪声 B0 0.05 14 松潘波 S4 0.40 2 松潘波 S1 0.05 15 Taft波 T4 0.40 3 Taft波 T1 0.05 16 西安人工波 X4 0.40 4 西安人工波 X1 0.05 17 白噪声 B4 0.05 5 白噪声 B1 0.05 18 松潘波 S5 0.60 6 松潘波 S2 0.10 19 Taft波 T5 0.60 7 Taft波 T2 0.10 20 西安人工波 X5 0.60 8 西安人工波 X2 0.10 21 白噪声 B5 0.05 9 白噪声 B2 0.05 22 松潘波 S6 0.80 10 松潘波 S3 0.20 23 Taft波 T6 0.80 11 Taft波 T3 0.20 24 西安人工波 X6 0.80 12 西安人工波 X3 0.20 25 西安人工波 X7 1.20 13 白噪声 B3 0.05 26 白噪声 B7 0.05 -
陈国兴, 王志华, 左熹等, 2010. 振动台试验叠层剪切型土箱的研制. 岩土工程学报, 32(1): 89—97.Chen G. X., Wang Z. H., Zuo X., et al., 2010. Development of laminar shear soil container for shaking table tests. Chinese Journal of Geotechnical Engineering, 32(1): 89—97. (in Chinese) 陈拓, 吴志坚, 王平, 2017. 兰州黄土场地地震动参数量化研究. 世界地震工程, 33(1): 166—171.Chen T., Wu Z. J., Wang P., 2017. Quantitative analysis of ground motion parameter of Lanzhou loessial sites. World Earthquake Engineering, 33(1): 166—171. (in Chinese) 费康, 彭劼, 2017. ABAQUS岩土工程实例详解. 北京: 人民邮电出版社, 2017: 97—107. 高中南, 钟秀梅, 王峻等, 2019. 粉煤灰改良饱和黄土动力特性研究. 世界地震工程, 35(3): 91—98.Gao Z. N., Zhong X. M., Wang J., et al., 2019. Dynamic characteristics of saturated loess improved by fly ash. World Earthquake Engineering, 35(3): 91—98. (in Chinese) 韩建平, 聂闻锐, 2020. 黄土地区地上两层地铁车站抗震性能振动台试验. 兰州理工大学学报, 46(2): 127—132. doi: 10.3969/j.issn.1673-5196.2020.02.022Han J. P., Nie W. R., 2020. Shaking table test for anti-seismic performance of subway station in loess area with two floors aboveground. Journal of Lanzhou University of Technology, 46(2): 127—132. (in Chinese) doi: 10.3969/j.issn.1673-5196.2020.02.022 韩俊艳, 万宁潭, 李立云等, 2018. 长输埋地管道振动台试验传感器布置方案研究. 震灾防御技术, 13(1): 13—22. doi: 10.11899/zzfy20180102Han J. Y., Wan N. T., Li L. Y., et al., 2018. Study on the scheme of sensor position in shaking table test for long distance buried pipeline. Technology for Earthquake Disaster Prevention, 13(1): 13—22. (in Chinese) doi: 10.11899/zzfy20180102 李振宝, 李晓亮, 唐贞云等, 2010. 土-结构动力相互作用的振动台试验研究综述. 震灾防御技术, 5(4): 439—450. doi: 10.3969/j.issn.1673-5722.2010.04.006Li Z. B., Li X. L., Tang Z. Y., et al., 2010. Review of research on shaking table test of dynamic soil-structure interaction. Technology for Earthquake Disaster Prevention, 5(4): 439—450. (in Chinese) doi: 10.3969/j.issn.1673-5722.2010.04.006 慕焕东, 邓亚虹, 彭建兵, 2014. 西安地区地裂缝带黄土动力特性试验研究. 地质工程学报, 22(5): 951—957.Mu H. D., Deng Y. H., Peng J. B., 2014. Experimental research on loess dynamic characteristics at ground fissure belt in Xi'an area. Journal of Engineering Geology, 22(5): 951—957. (in Chinese) 权登州, 王毅红, 井彦林等, 2015. 黄土地区地铁地下结构抗震研究综述. 震灾防御技术, 10(3): 565—574. doi: 10.11899/zzfy20150310Quan D. Z., Wang Y. H., Jing Y. L., et al., 2015. Review of anti-seismic structures of subway in Loess Area. Technology for Earthquake Disaster Prevention, 10(3): 565—574. (in Chinese) doi: 10.11899/zzfy20150310 孙海峰, 2011. 地下结构地震破坏机理研究. 哈尔滨: 中国地震局工程力学研究所, 44—52.Sun H. F., 2011. Study on earthquake damage mechanism of underground structures. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 44—52. (in Chinese) 王兰民, 孙军杰, 2014. 黄土高原城镇建设中的地震安全问题. 地震工程与工程振动, 34(4): 115—122.Wang L. M., Sun J. J., 2014. Seismic safety issues in the process of urban development in Loess Plateau. Earthquake Engineering and Engineering Dynamics, 34(4): 115—122. (in Chinese) 王谦, 马金莲, 马海萍等, 2019. 饱和黄土动剪切模量和阻尼比的试验研究. 岩石力学与工程学报, 38(9): 1919—1927.Wang Q., Ma J. L., Ma H. P., et al., 2019. Dynamic shear modulus and damping ratio of saturated loess. Chinese Journal of Rock Mechanics and Engineering, 38(9): 1919—1927. (in Chinese) 夏坤, 张令心, 董林, 2018. 汶川地震远震区黄土场地地震反应特征分析. 地震工程学报, 40(3): 504—511. doi: 10.3969/j.issn.1000-0844.2018.03.504Xia K., Zhang L. X., Dong L., 2018. Earthquake response analysis for loess sites in far-field of Wenchuan Earthquake. China Earthquake Engineering Journal, 40(3): 504—511. (in Chinese) doi: 10.3969/j.issn.1000-0844.2018.03.504 张希栋, 骆亚生, 2015. 双向动荷载下黄土的动剪切模量特性研究. 岩土力学, 36(9): 2591—2598.Zhang X. D., Luo Y. S., 2015. Study of dynamic shear modulus of loess under bidirectional dynamic loads. Rock and Soil Mechanics, 36(9): 2591—2598. (in Chinese) 周颖, 吕西林, 2012. 建筑结构振动台模型试验方法与技术. 北京: 科学出版社, 40—46.Zhou Y., Lv X. L., 2012. Method and technology for shaking table model test of building structures. Beijing: Science Press, 40—46. (in Chinese) Chen G. X., Chen S., Zuo X., et al., 2015. Shaking-table tests and numerical simulations on a subway structure in soft soil. Soil Dynamics and Earthquake Engineering, 76: 13—28. doi: 10.1016/j.soildyn.2014.12.012 Lysmer J., Kuhlemeyer R. L., 1969. Finite dynamic model for infinite media. Journal of the Engineering Mechanics Division, 95(4): 859—878. doi: 10.1061/JMCEA3.0001144