• ISSN 1673-5722
  • CN 11-5429/P

北方村落木结构民居榫卯节点抗震性能试验研究

沈银澜 周敬轩 王利辉 刘辉 周海宾 吴震东 宫逸飞

宋晓春, 宋廷苏. 隔震支墩长细比研究[J]. 震灾防御技术, 2020, 15(2): 317-328. doi: 10.11899/zzfy20200209
引用本文: 沈银澜,周敬轩,王利辉,刘辉,周海宾,吴震东,宫逸飞,2021. 北方村落木结构民居榫卯节点抗震性能试验研究. 震灾防御技术,16(1):165−175. doi:10.11899/zzfy20210117. doi: 10.11899/zzfy20210117
Song Xiaochun, Song Tingsu. Study on Slenderness Ratio of Isolated Piers[J]. Technology for Earthquake Disaster Prevention, 2020, 15(2): 317-328. doi: 10.11899/zzfy20200209
Citation: Shen Yinlan, Zhou Jingxuan, Wang Lihui, Liu Hui, Zhou Haibin, Wu Zhendong, Gong Yifei. Experimental Study on Seismic Performance of Mortise-tenon Joints of Traditional Wood Residences in North China Villages[J]. Technology for Earthquake Disaster Prevention, 2021, 16(1): 165-175. doi: 10.11899/zzfy20210117

北方村落木结构民居榫卯节点抗震性能试验研究

doi: 10.11899/zzfy20210117
基金项目: 国家自然科学基金项目(52008011);中国博士后科学基金项目(2019M660501);北京市教委一般项目(KM201910005019)
详细信息
    作者简介:

    沈银澜,女,生于1985年。高级工程师。主要从事现代及古建木结构研究。E-mail:shenyinlan@bjut.edu.cn

    通讯作者:

    王利辉,男,生于1984年。工程师。主要从事工程结构抗震研究。E-mail:wlh2016@bjut.edu.cn

Experimental Study on Seismic Performance of Mortise-tenon Joints of Traditional Wood Residences in North China Villages

  • 摘要: 现存的传统村落木结构民居,由于受风雨侵蚀及战乱、地震、火灾的破坏,发生不同程度的损伤和破坏,榫卯节点残损情况直接影响整个民居房屋结构的安全。以北方地区传统村落“四梁八柱”木结构民居榫卯节点(馒头榫)为研究对象,考虑不同残损类型及程度,制作5个足尺梁柱节点模型,通过拟静力低周往复加载试验研究其破坏模式、弯矩-转角滞回响应及骨架曲线、加载刚度、变形、强度及耗能能力等力学性能。试验结果表明:馒头榫节点破坏模式表现为榫头拔出、榫与卯口挤压变形;相比于完好节点,残损馒头榫节点抗弯承载力、加载刚度和耗能能力明显降低,且“捏拢”效应加剧;榫头松动是导致节点力学性能降低的直接原因;垂直加载方向虫蛀节点力学性能劣化程度强于平行加载方向虫蛀节点,更易导致耗能能力降低。
  • 国内外地震灾害分析表明,隔震技术在提高结构抗震性能、经济效益和社会效益等方面具有显著优势,近几十年隔震技术在建筑结构与桥梁工程领域得到一定应用。但《建筑抗震设计规范》(GB 50011—2010)(中华人民共和国住房和城乡建设部等,2016)中第12.2.9条第2款规定隔震层应满足嵌固刚度比要求,此要求使隔震支墩长细比较小,须单独增设1个隔震层,增加了结构造价,在一定程度上限制了隔震技术的应用。

    目前对隔震支墩长细比的研究较少,主要集中于对底部二层框架上部多塔楼底隔震结构的数值模拟与试验研究(徐忠根等,2005)、对首层薄弱层框架结构柱顶隔震性能的分析(吴应雄等,2011)、对层间隔震减震结构的理论分析和振动台试验研究(黄襄云,2008)、对近断层脉冲型地震动作用下高层建筑组合隔震结构的减震性能研究(潘钦锋等,2019)等,上述研究中模型均设置了单独的隔震层,未涉及隔震支墩长细比的研究。另外,对屋盖结构柱顶隔震技术的研究仅针对大跨度结构,得出柱顶隔震技术可应用于屋盖结构的结论(唐柏鉴等,2005),对高举架立式圆筒型储液容器柱顶隔震地震动响应的研究仅针对构筑物(孙建刚等,2018)。本文使用大型通用有限元分析软件ANSYS分别对无隔震支座、常规隔震、柱顶隔震、柱底隔震4种方案的同一建筑进行地震时程反应分析,研究隔震支墩长细比对隔震效果的影响,进而证实柱顶隔震、柱底隔震方案的可行性,从而降低隔震建筑造价,为医院、学校等多层建筑隔震设计提供经济可行性,同时也为《建筑抗震设计规范》(GB 50011—2010)的修订提供一定理论依据。

    本建筑为混凝土框架结构民用建筑,共8层,层高3m,纵向5跨,跨度均为6m,横向3跨,跨度分别为6.3m、2.7m、6.3m。本建筑处于8度设防区,设计地震加速度为0.20g,地震分组为第二组,场地类别为Ⅱ类,根据《建筑抗震设计规范》(GB 50011—2010),得该场地特征周期为0.4s,属于重点设防类、乙类建筑,结构平面图如图 1所示。

    图 1  结构平面图(mm)
    Figure 1.  The plan of structure (mm)

    本文使用大型通用有限元分析软件ANSYS进行地震时程反应分析。本工程结构为钢筋混凝土框架结构,通过实体单元Solid65模拟。为更好地模拟地震动,用3个相互垂直的弹簧单元Combin14分别模拟普通橡胶隔震支座xyz方向的分量,用2个相互垂直的弹簧单元Combin40分别模拟铅芯橡胶隔震支座xy方向的分量,用Combin14单元模拟铅芯橡胶隔震支座z方向的分量(王新敏等,2011)。建筑物有限元模型如图 2,普通隔震支座有限元模拟示意图如图 3

    图 2  建筑物有限元模型
    Figure 2.  The finite element model of building
    图 3  普通隔震支座有限元模拟示意图
    Figure 3.  The finite element simulation diagram of ordinary isolation bearing

    无隔震支座方案为常规建筑底部无隔震支座;常规隔震方案为在底部单独增设1个隔震层,在隔震层底部安装隔震支座;柱顶隔震方案为不在首层、底部单独增设隔震层,在首层柱柱顶安装隔震支座;柱底隔震方案为不在首层、底部单独增设隔震层,在首层柱柱底安装隔震支座。

    本文利用PKPM软件计算无隔震支座方案建筑在重力荷载代表值作用下的首层柱柱底压力,结果见表 1

    表 1  首层柱柱底压力计算结果(kN)
    Table 1.  The bottom pressure result of the first layer's coloum on PKPM (kN)
    横轴 纵轴
    1524.6 2065.7 2083.7 2083.7 2065.7 1524.6
    1768.7 2301.2 2322.3 2322.3 2301.2 1768.7
    1768.7 2301.2 2322.3 2322.3 2301.2 1768.7
    1524.6 2065.7 2083.7 2083.7 2065.7 1524.6
    下载: 导出CSV 
    | 显示表格

    柱顶隔震方案中,首层和2层柱截面尺寸为800mm×800mm,柱底隔震方案中只有底层柱截面尺寸为800mm×800mm,其他柱截面尺寸均为600mm×600mm,梁截面尺寸为300mm×500mm,板厚100mm。柱顶隔震方案中,首层和2层柱Solid65单元弹性模量取3.80×104N/mm2,柱底隔震方案中只有底层柱Solid65单元弹性模量取3.80×104N/mm2,其他柱Solid65单元弹性模量取均3.45×104N/mm2,泊松比取0.2,密度取5300kg/m3。根据重力荷载代表值作用下的柱底压力计算结果(表 1),按隔震橡胶支座最大竖向受力及外部支座扭转位移较大的原则,使用3类隔震橡胶支座,支座1为LNR(普通橡胶支座,下同)600,支座2为LRB(铅芯橡胶支座,下同)500,支座3为LRB600,支座力学参数和结构尺寸见表 2表 3,其中,Ⓐ、Ⓕ轴选用LRB500支座,①、④轴(除与Ⓐ、Ⓕ轴相交的支座外)选用LRB600支座,其余支座选用LNR600支座(图 4),无隔震支座、常规隔震、柱顶隔震、柱底隔震4种方案单元数分别为49328、54144、49400、49400,模型底部采用固定约束。

    表 2  隔震支座力学参数
    Table 2.  The mechanics parameter of isolation bearing
    序号 类型 设计荷载/kN 竖向刚度/kN·mm-1 等效水平刚度/kN·mm-1 屈服前刚度/kN·mm-1 屈服后刚度/kN·mm-1 屈服力/kN 等效阻尼比/%
    1 LNR600 4230 2803 0.917
    2 LRB500 2945 2451 1.186 10.139 12.121 40 20.9
    3 LRB600 4241 2917 1.459 0.780 0.932 63 21.9
    下载: 导出CSV 
    | 显示表格
    表 3  隔震支座结构尺寸
    Table 3.  The structure size of isolation bearing
    序号 类型 支座外径/mm 橡胶保护层厚度/mm 内部橡胶厚度/mm 有效直径/mm 铅芯直径/mm 不含连板高度/mm 第一形状系数 第二形状系数 连接板外形尺寸/mm 连接板厚度/mm 螺栓直径/mm 螺栓个数 支座高度/mm
    1 LNR600 620 10 118.9 600 241.3 34.8 5.0 700 25.0 M36 4 291.3
    2 LRB500 520 10 98.6 500 80 213.0 36.8 5.1 600 22.0 M30 4 257.0
    3 LRB600 620 10 118.9 600 100 241.3 36.6 5.0 700 25.0 M36 4 291.3
    下载: 导出CSV 
    | 显示表格
    图 4  隔震支座分布图(mm)
    Figure 4.  The distribution diagram of isolation bearing (mm)

    用时程分析法分析结构地震响应时,除给出必要的结构参数外,还应确定相应的输入地震动时程。地震动时程影响因素较多,在相同烈度下,同一场地类别的观测点观测到的地震加速度记录在峰值、波形、频谱和持续时间上不同,即使是同一震源先后两次相同震级的地震,同一观测点观测到的地震加速度记录也不同(杨溥等,2000王丽娟,2013)。但只要合理选择地震动主要参数(幅值、频谱、持时),时程分析结果较可靠。因此,选择合适的地震动参数,并调整计算结果尤为重要(兰雁,2012李建亮等,2011)。

    《建筑抗震设计规范》(GB 50011—2010)中第5.1.2条规定,采用时程分析法时,应按建筑场地类别和设计地震分组选用实际强震记录和人工模拟的加速度时程曲线,其中实际强震记录数量不应少于总数的2/3。当取3组加速度时程曲线输入时,计算结果宜取时程法包络值和振型分解反应谱法的较大值。《建筑抗震设计规范》(GB 50011—2010)第5.1.2条规定,当结构采用三维空间模型需要双向(2个水平方向)或三向(2个水平方向和1个竖向)地震动输入时,其加速度最大值通常按1(水平方向1):0.85(水平方向2):0.65(竖向)的比例调整。

    本工程分别采用罕遇地震水平和设防地震水平3条不同地震动时程进行时程反应分析,研究建筑遭遇罕遇地震和设防地震时的反应情况,输入的地震动时程分别为由设计反应谱得到的人工地震动时程、相同场地类别并经过调幅的El-Centro地震动时程及唐山地震动时程。

    调幅后罕遇地震水平SPECTRUM地震动、唐山地震动、El-Centro地震动时程曲线及3条地震动时程反应谱曲线、平均反应谱曲线和规范反应谱曲线的对比如图 5。《建筑抗震设计规范》(GB 50011—2010)中第5.1.2条规定,输入的地震加速度时程曲线有效持续时间一般从首次达到该时程曲线最大峰值的10%那一刻算起,到最后一刻达到最大峰值的10%为止;无论是实际的强震记录还是人工模拟波形,有效持续时间一般为结构基本周期的5—10倍。由图 5(a)5(b)5(c)可知,3条地震动时程有效持续时间均达到建筑自身结构基本周期(2.32s)的5—10倍,满足规定。由图 5(d)可知,各地震动时程平均反应谱曲线与规范反应谱曲线较接近,满足要求。由此可知,这3条地震动时程可用于本工程地震动时程输入。

    图 5  水平罕遇地震作用下3条地震动时程及反应谱对比
    Figure 5.  Three seismic wave time history of horizontal rare occurrence earthquake level and comparison of response spectrum

    输入调幅后的罕遇地震水平唐山地震动时程后无隔震支座、常规隔震、柱顶隔震、柱底隔震4种方案建筑物纵向第3跨最高处中部纵向位移时程曲线如图 6。由图 6可知,遭遇地震时,无隔震支座方案建筑物摆动频率较大,使用隔震支座后,隔震支座使整个建筑物刚度变小,摆动频率降低,周期变大,减小了地震对结构、非结构构件、内部附属物品的损坏;隔震建筑物顶部位移小于无隔震支座建筑物,有利于减小地震对结构、非结构构件、内部附属物品的损坏;常规隔震方案与柱顶隔震方案、柱底隔震方案建筑物顶部位移反应基本相同,说明对于建筑物顶部位移反应而言,隔震支墩长细比基本能达到普通层柱长细比,可根据建筑物自身需求决定采用柱顶隔震方案或柱底隔震方案。

    图 6  输入调幅唐山地震动时程后建筑物纵向第3跨最高处中部纵向位移反应
    Figure 6.  The longitudinal displacement response on the middle part of the construction's third longitudinal span after inputting amplitude adjusted tangshan seismic wave time history

    输入调幅后的罕遇地震水平El-Centro地震动时程后无隔震支座、常规隔震、柱顶隔震、柱底隔震4种方案建筑物纵向第3跨最高处中部最大纵向位移时建筑的纵向位移云图如图 7,由图 7可知,遭遇地震时,无隔震支座方案建筑物运动方式为左右摆动,使用隔震支座后,支座上部建筑物运动方式变为平动,大部分位移由隔震支座承担,建筑自身层间相对位移很小,隔震支座消耗了大部分地震能量,可减小地震对结构、非结构构件、内部附属物品的损坏;常规隔震、柱顶隔震、柱底隔震3种方案建筑物位移反应相差较小,其中柱顶隔震方案建筑物位移相对较小,仅柱顶隔震方案建筑物首层柱位移较大,不利于装修和非结构构件的安装,加大了地震发生时首层顶部非结构构件和附属构件脱落致人伤亡的危险,综合比较得知,隔震支墩长细比基本能达到普通层柱长细比,出于安全考虑,应优选柱底隔震方案。

    图 7  输入调幅El-Centro地震动时程后建筑物最大纵向位移云图(mm)
    Figure 7.  The max longitudinal displacement cloud diagram of the construct after inputting amplitude adjusted El-Centro seismic wave time history (mm)

    输入罕遇地震和设防地震水平地震动时程后,柱顶隔震方案和柱底隔震方案与常规隔震方案建筑物隔震支座纵向和横向最大位移比见表 4,由表 4可知,对于铅芯橡胶支座,遭遇罕遇地震和设防地震水平地震动时,柱顶隔震方案和柱底隔震方案建筑物隔震支座纵向和横向位移均小于常规隔震方案,比值为0.73—0.99;对于普通橡胶支座,遭遇罕遇地震和设防地震水平地震动时,柱顶隔震方案和柱底隔震方案建筑物隔震支座纵向和横向位移均大于常规隔震方案,比值为1.15—1.43。可考虑将普通橡胶支座全部换成铅芯橡胶支座或更换大一号的普通橡胶支座避免遭遇地震时可能出现的破坏。综上所述,隔震支墩长细比基本能达到普通层柱长细比。

    表 4  柱顶隔震方案和柱底隔震方案与常规隔震方案建筑物隔震支座位移比
    Table 4.  The isolation bearing's displacement ratio of the column's top and bottom isolation project with the conventional isolation project
    横轴 工况 支座位置 方向 纵轴
    罕遇地震 柱顶 纵向 0.91 0.87 0.87 0.87 0.87 0.92
    横向 0.93 0.88 0.88 0.88 0.88 0.92
    柱底 纵向 0.98 0.99 0.99 0.99 0.99 0.91
    横向 0.99 0.92 0.93 0.92 0.91 0.89
    设防地震 柱顶 纵向 0.91 0.87 0.87 0.87 0.87 0.92
    横向 0.93 0.88 0.88 0.88 0.88 0.92
    柱底 纵向 0.97 0.99 0.98 0.99 0.99 0.98
    横向 0.98 0.91 0.92 0.91 0.90 0.88
    罕遇地震 柱顶 纵向 0.91 1.15 1.15 1.15 1.15 0.92
    横向 0.91 1.17 1.17 1.17 1.17 0.91
    柱底 纵向 0.90 1.33 1.33 1.33 1.33 0.92
    横向 0.99 1.44 1.43 1.42 1.42 0.96
    设防地震 柱顶 纵向 0.91 1.15 1.15 1.15 1.15 0.92
    横向 0.91 1.17 1.17 1.17 1.17 0.91
    柱底 纵向 0.89 1.33 1.33 1.33 1.33 0.91
    横向 0.99 1.43 1.43 1.42 1.41 0.95
    罕遇地震 柱顶 纵向 0.91 1.15 1.15 1.15 1.15 0.91
    横向 0.91 1.16 1.16 1.16 1.16 0.91
    柱底 纵向 0.90 1.33 1.33 1.33 1.33 0.91
    横向 0.99 1.43 1.43 1.43 1.41 0.95
    设防地震 柱顶 纵向 0.91 1.15 1.15 1.15 1.15 0.91
    横向 0.91 1.16 1.16 1.16 1.16 0.91
    柱底 纵向 0.89 1.32 1.32 1.33 1.33 0.91
    横向 0.99 1.42 1.42 1.42 1.41 0.95
    罕遇地震 柱顶 纵向 0.91 0.87 0.86 0.86 0.86 0.91
    横向 0.93 0.89 0.89 0.89 0.89 0.93
    柱底 纵向 0.88 0.88 0.88 0.88 0.88 0.90
    横向 0.97 0.92 0.91 0.91 0.90 0.89
    设防地震 柱顶 纵向 0.84 0.87 0.86 0.86 0.86 0.91
    横向 0.93 0.89 0.89 0.89 0.89 0.93
    柱底 纵向 0.80 0.87 0.87 0.87 0.87 0.89
    横向 0.96 0.91 0.90 0.90 0.89 0.88
    下载: 导出CSV 
    | 显示表格

    输入罕遇地震和设防地震水平地震动时程后,柱顶隔震方案和柱底隔震方案与常规隔震方案建筑物每层纵向和横向最大层间位移角比见表 5,由表 5可知,遭遇罕遇地震和设防地震水平地震动时,柱顶隔震方案和柱底隔震方案与常规隔震方案建筑物相比,横向和纵向层间位移角增幅较小,层间位移角比为0.82—1.06,这是因为在采用柱顶隔震方案和柱底隔震方案的建筑物中,对隔震支座相邻上下层柱混凝土尺寸、强度等级和钢筋等进行了一定优化,使其抗变形能力增强,在一定程度上抵消了由于隔震支墩柔性、位移变形较大造成的支座相邻上下层层间位移角增大,使其与常规隔震方案建筑物层间位移角相比未发生太大变化;另外,纵向层间位移角比值基本小于横向层间位移角比值,这是由于纵向层间刚度大于横向层间刚度,使其受隔震方案变化的影响偏小。综上所述,隔震支墩长细比基本能达到普通层柱长细比。

    表 5  柱顶隔震方案和柱底隔震方案与常规隔震方案建筑物层间位移角比
    Table 5.  The displacement angle's ratio between layers of the column's top and bottom isolation project with the conventional isolation project
    层数 罕遇地震 设防地震
    柱底 柱顶 柱底 柱顶
    纵向 横向 纵向 横向 纵向 横向 纵向 横向
    1 1.00 1.05 1.06 1.03 1.04 1.00 1.01 1.03
    2 1.04 1.05 1.03 1.05 1.02 1.01 1.02 1.02
    3 0.87 1.00 0.92 1.01 0.96 1.01 0.91 1.01
    4 0.83 1.02 0.87 0.98 0.97 0.98 0.85 0.92
    5 0.82 1.01 0.84 0.97 0.99 0.97 0.89 0.95
    6 0.82 1.04 0.85 1.04 1.00 0.99 0.87 0.96
    7 0.83 1.01 0.90 1.02 1.00 0.89 0.88 1.01
    8 0.82 1.01 0.95 1.01 1.02 1.02 0.82 0.97
    下载: 导出CSV 
    | 显示表格

    输入罕遇地震和设防地震水平地震动时程后,柱顶隔震方案和柱底隔震方案与常规隔震方案建筑物每层纵向和横向最大层间剪力比见表 6,由表 6可知,遭遇罕遇地震和设防地震水平地震动时,柱顶隔震方案建筑物首层位移基本由隔震支座承担,隔震支墩位移较小,基本不受剪力作用,因此剪力比为0,2层层间剪力比为1.01—1.03;柱底隔震方案建筑物首层层间剪力增幅较小,层间剪力比为1.01—1.05,这是因为柱顶隔震方案和柱底隔震方案建筑物中,对隔震支座相邻上下层柱混凝土尺寸、强度等级和钢筋等进行了一定优化,使其抗剪能力增强,在一定程度上抵消了由于隔震支墩柔性、位移变形较大造成的隔震支座相邻上下层层间剪力增大,使其与常规隔震方案建筑物层间剪力相比未发生太大变化;其他层层间剪力由于远离隔震支座所在层,在未进行柱相关参数优化的基础上,层间剪力比为0.85—1.05。综上所述,隔震支墩长细比基本能达到普通层柱长细比。

    表 6  柱顶隔震方案和柱底隔震方案与常规隔震方案建筑物层间剪力比
    Table 6.  The shear's ratio between layers of the column's top and bottom isolation project with the conventional isolation project
    层数 罕遇地震 设防地震
    柱底 柱顶 柱底 柱顶
    纵向 横向 纵向 横向 纵向 横向 纵向 横向
    1 1.02 1.05 0.00 0.00 1.01 1.04 0.00 0.00
    2 0.89 0.96 1.01 1.03 1.05 0.90 1.02 1.03
    3 0.93 0.87 0.98 1.03 0.96 0.85 1.01 0.92
    4 1.05 1.04 1.02 0.91 1.04 0.87 0.89 0.85
    5 0.95 0.90 0.94 0.94 0.95 0.98 0.96 0.87
    6 0.86 1.04 0.98 0.88 0.98 0.96 0.91 0.86
    7 1.00 0.91 0.94 1.01 1.03 0.92 0.85 0.85
    8 0.99 1.01 1.01 0.87 1.01 0.87 0.98 0.99
    下载: 导出CSV 
    | 显示表格

    利用ANSYS软件分别对采用无隔震支座、常规隔震、柱顶隔震、柱底隔震4种方案的相同建筑进行罕遇地震和设防地震水平地震动时程反应分析,得出以下结论:

    (1) 由于地震随机性很强,地面运动影响因素较多,同一建筑在输入相同场地条件和幅值的不同地震动时程后,其位移、应力等差别较大。

    (2) 遭遇地震时,无隔震支座建筑物摆动频率较大,增设隔震支座后使整个建筑物摆动频率降低,周期变大;隔震建筑物大部分位移由隔震支座承担,建筑自身层间相对位移较小,减小了地震对结构、非结构构件、内部附属物品的损坏;3种隔震方案建筑物位移反应相差较小,柱顶隔震方案建筑物位移相对较小。

    (3) 遭遇罕遇地震和设防地震水平地震动时,对于铅芯橡胶支座,柱顶隔震方案和柱底隔震方案建筑物隔震支座位移均小于常规隔震方案;对于普通橡胶支座,柱顶隔震方案和柱底隔震方案建筑物隔震支座位移均大于常规隔震方案,可考虑将普通橡胶支座全部换成铅芯橡胶支座或更换大一号的普通橡胶支座避免遭遇地震时可能出现的破坏。

    (4) 遭遇罕遇地震和设防地震水平地震动时,柱顶隔震方案和柱底隔震方案建筑物层间位移角和层间剪力与常规隔震方案相比无实质性增大,这是因为对隔震支座相邻上下层柱混凝土尺寸、强度等级和钢筋等进行了一定优化,使其抗变形和抗剪能力增强,使其与常规隔震方案建筑物层间位移角和层间剪力相比未发生太大变化,使隔震支墩长细比基本能达到普通层柱长细比。

    (5) 当隔震支墩长细比不能达到普通层柱长细比时,可通过更换大一号隔震橡胶支座或加装阻尼器增加地震发生时消耗的地震能量,以此减少隔震支座位移、层间位移角和层间剪力,使隔震支墩长细比能达到普通层柱长细比。由此可见,柱顶隔震、柱底隔震方案可行,同时推动隔震技术在多层建筑特别是学校、医院等建筑中的应用,提高隔震建筑经济性,也为《建筑抗震设计规范》(GB 50011—2010)的修订提供一定理论依据。

  • 图  1  五檩硬山木构架

    Figure  1.  Five-purlin mountain wood frame

    图  2  榫头实体图

    Figure  2.  Actural pictures of tenon specimens

    图  3  各模型榫头信息

    Figure  3.  Details of tenon models

    图  4  加载装置示意图

    Figure  4.  Schematic diagram of the loading device

    图  5  加载幅值曲线

    Figure  5.  Loading amplitude curves

    图  6  馒头榫节点破坏形式

    Figure  6.  Failure modes of Mantou mortise-tenon joints

    图  7  残损节点与完好节点滞回曲线

    Figure  7.  The hysteretic curves of the damaged joints and intact joint

    图  8  弯矩-转角骨架曲线

    Figure  8.  Skeleton curves of moment and rotation angle

    图  9  各节点刚度退化曲线

    Figure  9.  Stiffness degradation curves of joint models

    图  10  各节点强度退化曲线

    Figure  10.  Strength deterioration curves of joint models

    图  11  强度退化曲线的回归分析

    Figure  11.  Regression analysis of strength deteriorations

    图  12  滞回耗能示意图

    Figure  12.  Schematic diagram of hysteretic energy consumption

    图  13  各节点等效黏滞阻尼系数-转角关系曲线

    Figure  13.  The equivalent damping coefficient-rotation angles curves of joint models

    图  14  各节点累积耗能

    Figure  14.  Accumulated energy dissipation of joints models

    表  1  樟子松清材试件力学性能

    Table  1.   Mechanical property of Pinus sylvestris clean specimens

    顺纹抗压强度
    /MPa
    顺纹抗拉强度
    /MPa
    顺纹抗压弹性模量
    /MPa
    横纹(径向)弹性模模
    /MPa
    横纹(弦向)弹性模量
    /MPa
    含水率
    /%
    横纹抗压(全表面)强度
    /MPa
    横纹抗压(局部)强度
    /MPa
    抗弯强度
    /MPa
    28.688.6942011213924.33.36.164.4
    下载: 导出CSV

    表  2  各节点力学性能参数

    Table  2.   Mechanical property parameters of Mantou mortise-tenon joints

    节点编号加载方向θy/radθmax/radMmax/(kN∙m)θu/radMu/(kN∙m)μ降低幅度/%
    延性系数承载力
    J1正向0.0640.1761.1531.2120.2370.9223.70
    负向0.0660.2211.27
    J2正向0.1190.2300.7500.5321856
    负向0.0620.1420.314−0.190.2513.04
    J3正向0.1050.1261.0531.1320.2290.8422.18417
    负向0.0700.2641.210
    J4正向0.0850.1731.0171.0310.2390.8142.812415
    负向0.0660.2391.045
    J5正向0.0750.1481.1460.9620.2130.9172.841721
    负向0.0520.1640.7780.1740.6223.32
    下载: 导出CSV
  • [1] 淳庆, 潘建伍, 2015. 江南地区抬梁木构建筑馒头榫节点受力性能研究. 四川大学学报(工程科学版), 47(5): 23—29.

    Chun Q., Pan J. W., 2015. Research on mechanical properties of Mantou mortise-tenon joints in the post-and-lintel constructions of the traditional timber buildings in the South Yangtze River regions. Journal of Sichuan University (Engineering Science Edition), 47(5): 23—29. (in Chinese)
    [2] 淳庆, 潘建伍, 韩宜丹, 2016a. 江南地区传统木构建筑半榫节点受力性能研究. 湖南大学学报(自然科学版), 43(1): 124—131.

    Chun Q., Pan J. W., Han Y. D., 2016a. Research on mechanical properties of ban mortise-tenon joint of the traditional timber buildings in the South Yangtze river regions. Journal of Hunan University (Natural Sciences), 43(1): 124—131. (in Chinese)
    [3] 淳庆, 潘建伍, 董运宏, 2016b. 江南地区传统木构建筑透榫节点受力性能研究. 西南交通大学学报, 51(5): 862—869.

    Chun Q., Pan J. W., Dong Y. H., 2016b. Mechanical properties of Tou mortise-tenon joints of the traditional timber buildings in the South Yangtze river regions. Journal of Southwest Jiaotong University, 51(5): 862—869. (in Chinese)
    [4] 隋䶮, 赵鸿铁, 薛建阳等, 2010. 古建筑木结构直榫和燕尾榫节点试验研究. 世界地震工程, 26(2): 88—92.

    Duo Y., Zhao H. T., Xue J. Y., et al., 2010. Experimental study on characteristics of mortise-tenon joints in historic timber buildings. World Earthquake Engineering, 26(2): 88—92. (in Chinese)
    [5] 高大峰, 邓红仙, 刘静等, 2014. 明清木结构榫卯节点拟静力试验研究. 世界地震工程, 30(4): 8—16.

    Gao D. F., Deng H. X., Liu J., et al., 2014. Pseudostatic experimental study on mortise and Tenon joints of timber structures of Chinese Ming and Qing Dynasties. World Earthquake Engineering, 30(4): 8—16. (in Chinese)
    [6] 高永林, 陶忠, 叶燎原等, 2015. 传统木结构典型榫卯节点基于摩擦机理特性的低周反复加载试验研究. 建筑结构学报, 36(10): 139—145.

    Gao Y. L., Tao Z., Ye L. Y., et al., 2015. Low-cycle reversed loading tests study on typical mortise-tenon joints of traditional timber building based on friction mechanism. Journal of Building Structures, 36(10): 139—145. (in Chinese)
    [7] 郭光玲, 张敏, 2019. 汉中村镇砖木结构房屋抗震现状及处理方法研究. 震灾防御技术, 14(4): 760—768. doi: 10.11899/zzfy20190407

    Guo G. L., Zhang M., 2019. Study on seismic resistance situation and treatment methods on brick-wood structure houses in towns and villages of Hanzhong. Technology for Earthquake Disaster Prevention, 14(4): 760—768. (in Chinese) doi: 10.11899/zzfy20190407
    [8] 郭光玲, 2020. 陕南村镇住宅结构体系抗震能力评价研究——以汉中市留坝县为例. 震灾防御技术, 15(1): 56—65. doi: 10.11899/zzfy20200106

    Guo G. L., 2020. Research on evaluation of seismic capability of rural residential structure system in Southern Shaanxi Province-in the Case of Liuba County, Hanzhong City. Technology for Earthquake Disaster Prevention, 15(1): 56—65. (in Chinese) doi: 10.11899/zzfy20200106
    [9] 李佳韦, 林金禄, 林敏郎等, 2007. 台湾传统建筑直榫木接头力学行为研究. 台湾林业科学, 22(2): 125—134.

    Lee C. W., Lin C. L., Lin M. L., et al., 2007. Studies of the mechanical behavior of tenon and mortise wood joints used in traditional Taiwanese construction. Taiwan Journal Forest Science, 22(2): 125—134.
    [10] 李佳韦, 2006. 中国传统建筑直榫木接头力学行为研究. 台湾, 中国: 台湾大学.

    Lee C. W., 2006. The structural behavior of defective plug-in joint in Chinese traditional wooden frames.Taiwan, China: National Chung Hsing University. (in Chinese)
    [11] 李忠献, 2004. 工程结构试验理论与技术. 天津: 天津大学出版社.

    Li Z. X., 2004. Theory and technique of engineering structure experiments. Tianjin: Tianjin University Press. (in Chinese)
    [12] 马炳坚, 2018. 中国古建筑木作营造技术. 2版. 北京: 科学出版社.

    Ma B. J., 2018. Wooden construction technology of Chinese ancient architecture. 2nd ed. Beijing: Science Press. (in Chinese)
    [13] 王满生, 杨威, 陈俞等, 2012. 北京地区农村砖木结构振动台试验研究. 地震工程与工程振动, 32(1): 128—133.

    Wang M. S., Yang W., Chen Y., et al., 2012. Shaking table test on a typical brick-timber structure model in rural areas of Beijing. Journal of Earthquake Engineering and Engineering Vibration, 32(1): 128—133. (in Chinese)
    [14] 王满生, 赵晓敏, 纪晓东等, 2015. 北京地区典型砖木结构农宅抗震加固性能研究. 土木建筑与环境工程, 37(6): 62—69.

    Wang M. S., Zhao X. M., Ji X. D., et al., 2015. Earthquake resistant behavior on seismic strengthening of typical rural brick-wood structure in Beijing. Journal of Civil, Architectural & Environmental Engineering, 37(6): 62—69. (in Chinese)
    [15] 谢启芳, 郑培君, 向伟等, 2014. 残损古建筑木结构单向直榫榫卯节点抗震性能试验研究. 建筑结构学报, 35(11): 143—150.

    Xie Q. F., Zheng P. J., Xiang W., et al., 2014. Experimental study on seismic behavior of damaged straight mortise-tenon joints of ancient timber buildings. Journal of Building Structures, 35(11): 143—150. (in Chinese)
    [16] 谢启芳, 杜彬, 向伟等, 2015. 古建筑木结构燕尾榫节点抗震性能及尺寸效应试验研究. 建筑结构学报, 36(3): 112—120.

    Xie Q. F., Du B., Xiang W., et al., 2015. Experimental study on seismic behavior and size effect of dovetail mortise-tenon joints of ancient timber buildings. Journal of Building Structures, 36(3): 112—120. (in Chinese)
    [17] 熊立红, 阳超, 2017. 砌体结构的抗震研究现状. 地震工程与工程振动, 37(3): 111—119.

    Xiong L. H., Yang C., 2017. An overview of research on seismic behavior of masonry structures. Earthquake Engineering and Engineering Dynamics, 37(3): 111—119. (in Chinese)
    [18] 薛建阳, 夏海伦, 李义柱等, 2017. 不同松动程度下古建筑透榫节点抗震性能试验研究. 西安建筑科技大学学报(自然科学版), 49(4): 463—469, 477.

    Xue J. Y., Xia H. L., Li Y. Z., et al., 2017. Experimental study on seismic behavior of penetrated mortise-tenon joints under different degree of looseness in ancient buildings. Journal of Xi′an University of Architecture & Technology (Natural Science Edition), 49(4): 463—469, 477. (in Chinese)
    [19] 杨娜, 王龙, 刘爱文等, 2018. 青海东南部农村民居结构特点及抗震能力分析. 震灾防御技术, 13(1): 206—214. doi: 10.11899/zzfy20180119

    Yang N., Wang L., Liu A. W., et al., 2018. Structural characteristics and seismic capacity analysis of rural buildings in the southeast of Qinghai Province. Technology for Earthquake Disaster Prevention, 13(1): 206—214. (in Chinese) doi: 10.11899/zzfy20180119
    [20] 杨威, 王满生, 纪晓东等, 2014. 北京农村砖木结构抗震加固动力特性分析. 土木工程学报, 47(3): 26—32.

    Yang W., Wang M. S., Ji X. D., et al., 2014. Dynamic characteristic analysis on seismic strengthening of existing rural masonry-timber buildings in Beijing. China Civil Engineering Journal, 47(3): 26—32. (in Chinese)
    [21] 姚侃, 赵鸿铁, 葛鸿鹏, 2006. 古建木结构榫卯连接特性的试验研究. 工程力学, 23(10): 168—173. doi: 10.3969/j.issn.1000-4750.2006.10.032

    Yao K., Zhao H. T., Ge H. P., 2006. Experimental studies on the characteristic of mortise-tenon joint in historic timber buildings. Engineering Mechanics, 23(10): 168—173. (in Chinese) doi: 10.3969/j.issn.1000-4750.2006.10.032
    [22] Han S. R., Lee J. J., 2006. Mechanical performance of Korean traditional wooden building of the column-girder tenon-joint by joint type. In: Proceedings of the 9th World Conference on Timber Engineering. Portland, USA.
    [23] King W. S., Yen J. Y. R., Yen Y. N. A., 1996. Joint characteristics of traditional Chinese wooden frames. Engineering Structures, 18(8): 635—644. doi: 10.1016/0141-0296(96)00203-9
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  215
  • HTML全文浏览量:  15
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-31
  • 网络出版日期:  2021-07-12
  • 刊出日期:  2021-03-01

目录

/

返回文章
返回