• ISSN 1673-5722
  • CN 11-5429/P

连续型隔振屏障在高速铁路环境振动问题治理中的应用研究

郁雯 刘杰 刘航 李凯

郁雯,刘杰,刘航,李凯,2021. 连续型隔振屏障在高速铁路环境振动问题治理中的应用研究. 震灾防御技术,16(1):157−164. doi: 10.11899/zzfy20210116
引用本文: 郁雯,刘杰,刘航,李凯,2021. 连续型隔振屏障在高速铁路环境振动问题治理中的应用研究. 震灾防御技术,16(1):157−164. doi: 10.11899/zzfy20210116
doi:10.11899/zzfy20210116. doi: 10.11899/zzfy20210116
Citation: doi:10.11899/zzfy20210116. doi: 10.11899/zzfy20210116

连续型隔振屏障在高速铁路环境振动问题治理中的应用研究

doi: 10.11899/zzfy20210116
基金项目: 张家口市科学技术研究与发展指令计划项目(1811009B-02);2020年河北省硕士研究生创新资助项目(CXZZSS2020140);2021年河北省高等学校科学技术研究青年基金项目(QN2021218)
详细信息
    作者简介:

    郁雯,女,生于1981年。硕士,副教授。主要从事铁路隔振领域研究。E-mail:yuwen810224@163.com

Based on the Infinite Element Boundary Analysis, the Study of the Effect of Continuous Barrier on the Environmental Vibration of High-speed Railway

  • 摘要: 为探究高速铁路两侧隔振屏障隔振效果,采用有限元与无限元边界结合的方式进行分析,研究不同连续型隔振屏障及布置形式对隔振效果的影响。通过现场试验与同尺寸、同属性有限元模型对比试验,验证有限元模型合理性。计算结果表明:不同连续型隔振屏障中,空沟隔振效果最优,空沟隔振措施适合高速列车隔振;隔振屏障宽度为0.6~2.5倍波长时,其对隔振效果的影响较小,随着宽度的改变,隔振效果变化幅度较小;隔振屏障深度为3.8~15.2倍波长时,其对隔振效果的影响较明显,随着深度的增加,隔振效果增强;屏障位置对隔振效果的影响较大,建议屏障应靠近路基布置;连续型隔振屏障对高频的隔振效果优于低频。
  • 图  1  试验布置

    Figure  1.  Test layout

    图  2  有限元模型

    Figure  2.  Finite element model

    图  3  隔振曲线

    Figure  3.  Vibration isolation curve

    图  4  路基横断面示意图

    Figure  4.  Subgrade cross section

    图  5  计算模型

    Figure  5.  Calculation model

    图  6  测点位置示意图

    Figure  6.  Position of test points

    图  7  地表加速度云图

    Figure  7.  Acceleration cloud maps on ground surface

    图  8  不同屏障类型的Ar曲线

    Figure  8.  Ar curve of each barrier

    图  9  不同屏障宽度的Ar曲线

    Figure  9.  Ar curves of different widths

    图  10  不同屏障深度的Ar曲线

    Figure  10.  Ar curve of each depth

    图  11  不同振源距的Ar曲线

    Figure  11.  Ar curves of different distances from test point to the foot of roadbed slope

    图  12  不同激振频率的Ar曲线

    Figure  12.  Ar curve of each frequency

    表  1  路基与屏障材料参数

    Table  1.   Material parameters of subgrade

    类型密度/kg·m−3弹性模量/Pa泊松比
    路基表层2 0001.80×1080.250
    路基底层1 9501.10×1080.250
    地基土1 9002.00×1070.300
    轨道板25003.50×10100.167
    钢轨78002.10×10110.300
    支承层25002.70×10100.167
    混凝土板墙24003.00×10100.200
    橡胶板墙12007.80×1060.470
    下载: 导出CSV

    表  2  工况水平组合表

    Table  2.   Table of combination of parameter levels

    水平类型A宽度B/m深度C/m振源距D/m激振频率E/Hz
    1空沟0.53.05.020
    2混凝土板墙1.06.06.060
    3橡胶板墙1.59.07.0130
    42.012.08.0
    下载: 导出CSV
  • [1] 巴振宁, 梁建文, 张艳菊, 2016. 三维层状黏弹性半空间中球面SH、P和SV波源自由场. 地球物理学报, 59(2): 606—623. doi: 10.6038/cjg20160218

    Ba Z. N., Liang J. W., Zhang Y. J., 2016. Free-field responses of spherical SH-, P-and SV-wave sources in a layered visco-elastic half space. Chinese Journal of Geophysics, 59(2): 606—623. (in Chinese) doi: 10.6038/cjg20160218
    [2] 巴振宁, 刘冰松, 张龙等, 2018. 环境振动下德和园大戏楼动力响应分析. 建筑结构, 48(S1): 414—420.

    Ba Z. N., Liu B. S., Zhang L., et al., 2018. Dynamic response analysis of the Grand Theater in the Garden of Virtuous Harmony under the environmental vibration. Building Structure, 48(S1): 414—420. (in Chinese)
    [3] 陈行, 晏启祥, 黄希, 2017. 列车振动荷载作用下高速铁路近距地铁平行隧道的动力响应特性分析. 铁道标准设计, 61(6): 116—119, 130.

    Chen H., Yan Q. X., Huang X., 2017. Research on dynamic response of high-speed train vibration in parallel tunnel close to metro. Railway Standard Design, 61(6): 116—119, 130. (in Chinese)
    [4] 陈昆, 贾霄, 刘彬等, 2014. 高速铁路空沟隔振措施隔振效果的有限元分析. 地震工程学报, 36(3): 575—579. doi: 10.3969/j.issn.1000-0844.2014.03.0575

    Chen K., Jia X., Liu B., et al., 2014. Finite element analysis of reducing the high-speed railway vibration effect on the environment using open trenches. China Earthquake Engineering Journal, 36(3): 575—579. (in Chinese) doi: 10.3969/j.issn.1000-0844.2014.03.0575
    [5] 丁智, 张霄, 吴敏慧等, 2019. 双线地铁运营隔振沟屏障性能研究. 地震工程学报, 41(1): 9—15. doi: 10.3969/j.issn.1000-0844.2019.01.009

    Ding Z., Zhang X., Wu M. H., et al., 2019. Vibration isolation effect of isolation trenches during double-line subway operation. China Earthquake Engineering Journal, 41(1): 9—15. (in Chinese) doi: 10.3969/j.issn.1000-0844.2019.01.009
    [6] 关歆莹, 刘超, 2011. 地下铁道的振动及其控制措施的研究. 震灾防御技术, 6(1): 77—84. doi: 10.3969/j.issn.1673-5722.2011.01.008

    Guan X. Y., Liu C., 2011. The study on the vibration of metro and its control measures. Technology for Earthquake Disaster Prevention, 6(1): 77—84. (in Chinese) doi: 10.3969/j.issn.1673-5722.2011.01.008
    [7] 国家铁路局, 2015. TB 10621-2014 高速铁路设计规范. 北京: 中国铁道出版社.

    National Railway Administration of the People’s Republic of China, 2015. TB 10621—2014 Code for design of high speed railway. Beijing: China Railway Publishing House. (in Chinese)
    [8] 蒋英礼, 赵伯明, 胡晓勇, 2009. 软土地铁车站中柱在强震作用下的响应研究. 防灾减灾工程学报, 29(4): 405—410.

    Jiang Y. L., Zhao B. M., Hu X. Y., 2009. Study on response of Centre column of metro station in soft soils to strong earthquake. Journal of Disaster Prevention and Mitigation Engineering, 29(4): 405—410. (in Chinese)
    [9] 刘厚毅, 周游, 钟康明等, 2018. 场地条件对高速铁路地基土振动影响的研究. 震灾防御技术, 13(4): 893—902. doi: 10.11899/zzfy20180416

    Liu H. Y., Zhou Y., Zhong K. M., et al., 2018. Variation characteristics of foundation soil vibration caused by high speed train with depth under different site conditions. Technology for Earthquake Disaster Prevention, 13(4): 893—902. (in Chinese) doi: 10.11899/zzfy20180416
    [10] 刘晶磊, 赵晓玉, 张瑞恒等, 2019. 混凝土排桩深度优化及隔振效果研究. 安全与环境工程, 26(6): 202—208.

    Liu J. L., Zhao X. Y., Zhang R. H., et al., 2019. Research on depth optimization and vibration isolation effect of concrete row piles. Safety and Environmental Engineering, 26(6): 202—208. (in Chinese)
    [11] 刘晶磊, 赵倩, 梅名彰等, 2020. 轨道交通荷载下桩板结构主动隔振效果研究. 地震工程学报, 42(1): 7—14. doi: 10.3969/j.issn.1000-0844.2020.01.007

    Liu J. L., Zhao Q., Mei M. Z., et al., 2020. Active vibration isolation effect of the pile-plank structures under rail traffic loads. China Earthquake Engineering Journal, 42(1): 7—14. (in Chinese) doi: 10.3969/j.issn.1000-0844.2020.01.007
    [12] 孙立强, 李嘉, 刘彬等, 2015. 空沟、碎石填充沟和排桩隔振效果试验研究. 地震工程学报, 37(2): 342—348. doi: 10.3969/j.issn.1000-0844.2015.02.0342

    Sun L. Q., Li J., Liu B., et al., 2015. Experimental study on vibration-isolation effects of open trench, gravel-filled trench, and piles in a row. China Earthquake Engineering Journal, 37(2): 342—348. (in Chinese) doi: 10.3969/j.issn.1000-0844.2015.02.0342
    [13] 肖木洋, 2017. 轨道交通地震监测及预警系统现状分析. 地震工程学报, 39(S1): 189—194.

    Xiao M. Y., 2017. Status analysis of earthquake monitoring and warning system for rail transit. China Earthquake Engineering Journal, 39(S1): 189—194. (in Chinese)
    [14] 肖世伟, 雷长顺, 郭超等, 2011. 高速铁路空沟隔振数值分析. 铁道工程学报, (8): 23—29. doi: 10.3969/j.issn.1006-2106.2011.08.005

    Xiao S. W., Lei C. S., Guo C., et al., 2011. Numerical analysis of vibration reduction of open trench for high-speed railway. Journal of Railway Engineering Society, (8): 23—29. (in Chinese) doi: 10.3969/j.issn.1006-2106.2011.08.005
    [15] 徐平, 2017. 空沟对平面纵波隔离效果的理论解答. 振动与冲击, 36(5): 67—71, 101.

    Xu P., 2017. Theoretical analysis for isolation effect of an open trench on plane longitudinal waves. Journal of Vibration and Shock, 36(5): 67—71, 101. (in Chinese)
    [16] Adam M., Von Estorff O., 2005. Reduction of train-induced building vibrations by using open and filled trenches. Computers & Structures, 83(1): 11—24.
    [17] Andersen L., Nielsen S. R. K., 2005. Reduction of ground vibration by means of barriers or soil improvement along a railway track. Soil Dynamics and Earthquake Engineering, 25(7—10): 701—716. doi: 10.1016/j.soildyn.2005.04.007
    [18] Ganji V., Gucunski N., Maher A., 1997. Detection of underground obstacles by SASW method-numerical aspects. Journal of Geotechnical and Geoenvironmental Engineering, 123(3): 212—219. doi: 10.1061/(ASCE)1090-0241(1997)123:3(212)
    [19] Haupt W. A., 1978. Surface waves in nonhomogeneous half-space. In: Prange B, ed., Dynamical Methods in Soil and Rock Mechanics. Rotterdam: Balkema, 335—367.
    [20] Ju S. H., Lin H. T., 2006. Reduction of vibrations due to foundation slabs. Journal of Geotechnical and Geoenvironmental Engineering, 132(4): 511—520. doi: 10.1061/(ASCE)1090-0241(2006)132:4(511)
    [21] Persson, K., Persson P., Sandberg G., 2016. Numerical study of reduction in ground vibrations by using barriers. Engineering Structures, 115: 18—27. doi: 10.1016/j.engstruct.2016.02.025
    [22] Woods R. D., 1968. Screening of surface waves in soils. Journal of the Soil Mechanics and Foundations Division, 94(4): 951—979. doi: 10.1061/JSFEAQ.0001180
    [23] Zhu H. Y., Wang J. W., Cai C. B., et al., 2017. Development of a vibration attenuation track at low frequencies for urban rail transit. Computer‐Aided Civil and infrastructure Engineering, 32(9): 713—726. doi: 10.1111/mice.12285
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  154
  • HTML全文浏览量:  11
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-14
  • 网络出版日期:  2021-07-12
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回