• ISSN 1673-5722
  • CN 11-5429/P

基于柱顶隔震的3层3跨地铁地下车站结构抗震性能研究

陈文斌 庄海洋 李晟 陈苏

陈文斌,庄海洋,李晟,陈苏,2021.  基于柱顶隔震的3层3跨地铁地下车站结构抗震性能研究. 震灾防御技术,16(1):146−156. doi: 10.11899/zzfy20210115
引用本文: 陈文斌,庄海洋,李晟,陈苏,2021.  基于柱顶隔震的3层3跨地铁地下车站结构抗震性能研究. 震灾防御技术,16(1):146−156. doi: 10.11899/zzfy20210115
doi:10.11899/zzfy20210115. doi: 10.11899/zzfy20210115
Citation: doi:10.11899/zzfy20210115. doi: 10.11899/zzfy20210115

基于柱顶隔震的3层3跨地铁地下车站结构抗震性能研究

doi: 10.11899/zzfy20210115
基金项目: 国家自然科学基金项目(51978333)
详细信息
    作者简介:

    陈文斌,男,生于1996年。硕士研究生。主要从事地铁地下车站结构抗震性能研究。E-mail:chenwenbin0310@126.com

    通讯作者:

    庄海洋,男,生于1978年。教授,博士生导师。主要从事土-结构动力相互作用等方面的研究。E-mail:zhuang7802@163.com

Seismic Performance of the Three-layer Three-span Subway Underground Station Structure With Seismic Isolation Bearings Fixed on the Top of Columns

  • 摘要:

    针对3层3跨框架式地铁地下车站结构抗震薄弱构件,采用在柱顶不同位置设置铅芯橡胶隔震支座的方法,建立土-地下连续墙-主体结构非线性静动力耦合相互作用的二维整体时域有限元分析模型,分析柱顶隔震支座对车站主体结构的侧向变形、地震损伤和动应力反应等结构地震反应特性的影响。结果表明,仅在抗震薄弱的顶层和底层中柱柱顶设置2层隔震支座与各层中柱柱顶设置3层隔震支座均可有效减轻中柱地震损伤程度,提高车站结构整体抗震性能。然而,仅在顶、底层中柱柱顶设置2层隔震支座时,会明显加重未设置隔震支座的中间层中柱地震损伤程度。此外,柱顶隔震支座的设置会削弱隔震体系的整体抗侧移能力,从而增大地铁地下车站结构地震侧移。总体上,建议采用各层中柱柱顶均设置隔震支座的措施提升地铁地下车站结构的整体抗震性能。

  • 图  1  地铁地下车站结构横截面主要尺寸和配筋图

    Figure  1.  Main dimensions and distributed steels of cross section of underground subway station

    图  2  隔震支座设置位置示意图

    Figure  2.  Schematic diagram of setting position of lead rubber seismic isolation bearing

    图  3  输入地震波加速度反应谱

    Figure  3.  Acceleration response spectra of input ground motions

    图  4  土-地下连续墙-主体结构相互作用体系有限元模型

    Figure  4.  Finite element model for soil-diaphragm wall-subway station interaction system

    图  5  侧向位移沿车站主体结构高度的分布曲线

    Figure  5.  Maximal lateral displacements of subway station structure

    图  6  车站主体结构各层最大层间位移角

    Figure  6.  Maximum interlayer displacement angles of subway station structure

    图  7  Kobe波作用下车站主体结构受拉损伤云图(PBA=0.2 g

    Figure  7.  Tensile seismic damages of subway station under the Kobe wave with PBA=0.2 g

    图  8  Kobe波作用下车站主体结构受拉损伤云图(PBA=0.4 g

    Figure  8.  Tensile seismic damages of subway station under the Kobe wave with PBA=0.4 g

    图  9  Kobe波作用下车站主体结构受压损伤云图(PBA=0.4 g

    Figure  9.  Compress seismic damages of subway station under the Kobe wave with PBA=0.4 g

    图  10  Kobe波作用下车站结构中柱关键节点动应力反应时程曲线(PBA=0.4 g

    Figure  10.  Time-history curve of dynamic stress for critical nodes of columns under the Kobe wave with PBA=0.4 g

    表  1  工程场地条件及其参数

    Table  1.   Soil conditions and physical properties of soils in site

    土层编号土性重度/kN·m−3弹性模量/MPa层厚/m动泊松比剪切波速/m·s−1
    1 素填土 18.4 3.5 3.0 0.49 200
    2 软黏土 19.0 8.0 4.0 0.49 225
    3 软黏土 20.5 10.0 4.5 0.49 250
    4 黏土 19.4 14.5 4.0 0.49 275
    5 砂土 19.4 12.0 4.0 0.49 300
    6 砂土 19.4 12.0 4.0 0.49 325
    7 砂土 20.9 14.5 4.0 0.49 350
    8 砂土 20.9 27.7 4.0 0.49 375
    9 砂土 21.2 27.8 4.0 0.49 400
    10 砂土 21.2 33.0 4.0 0.49 425
    11 砂土 18.9 33.0 4.0 0.49 450
    12 老黏土 18.9 33.0 4.0 0.49 475
    13 老黏土 18.9 35.0 4.0 0.49 490
    14 老黏土 20.5 35.0 4.0 0.49 600
    15 老黏土 20.5 35.0 4.0 0.49 700
    16 老黏土 20.5 35.0 4.0 0.49 800
    17 老黏土 20.5 40.0 4.0 0.49 900
    18 老黏土 19.3 40.0 4.0 0.49 1000
    19 老黏土 19.3 40.0 4.0 0.49 1000
    20 老黏土 19.3 45.0 4.5 0.49 1000
    下载: 导出CSV

    表  2  铅芯橡胶隔震支座主要参数

    Table  2.   Main parameters of lead rubber seismic isolation bearing

    支座
    直径/mm
    安装
    高度/mm
    容许水平
    位移/mm
    竖向
    承载力/kN
    水平等效
    刚度/kN·mm−1
    屈服后
    刚度/kN·mm−1
    竖向压缩
    刚度/kN·mm−1
    等效
    阻尼比/%
    6002513303 6002.641.833 62717.18
    下载: 导出CSV
  • 杜修力, 王刚, 路德春, 2016. 日本阪神地震中大开地铁车站地震破坏机理分析. 防灾减灾工程学报, 36(2): 165—171.

    Du X. L., Wang G., Lu D. C., 2016. Earthquake damage mechanism analysis of Dakai metro station by Kobe earthquake. Journal of Disaster Prevention and Mitigation Engineering, 36(2): 165—171. (in Chinese)
    杜修力, 马超, 路德春等, 2017. 大开地铁车站地震破坏模拟与机理分析. 土木工程学报, 50(1): 53—62, 69.

    Du X. L., Ma C., Lu D. C., et al., 2017. Collapse simulation and failure mechanism analysis of the Daikai subway station under seismic loads. China Civil Engineering Journal, 50(1): 53—62, 69. (in Chinese)
    杜修力, 李洋, 许成顺等, 2018. 1995年日本阪神地震大开地铁车站震害原因及成灾机理分析研究进展. 岩土工程学报, 40(2): 223—236. doi: 10.11779/CJGE201802002

    Du X. L., Li Y., Xu C. S., et al., 2018. Review on damage causes and disaster mechanism of Daikai subway station during 1995 Osaka-Kobe Earthquake. Chinese Journal of Geotechnical Engineering, 40(2): 223—236. (in Chinese) doi: 10.11779/CJGE201802002
    还毅, 方秦, 柳锦春等, 2011. 提高地铁车站结构抗震能力的理论及数值分析. 振动与冲击, 30(3): 252—257. doi: 10.3969/j.issn.1000-3835.2011.03.050

    Huan Y., Fang Q., Liu J. C., et al., 2011. Theoretical and numerical investigations on enhancement of aseismic capability of metro stations. Journal of Vibration and Shock, 30(3): 252—257. (in Chinese) doi: 10.3969/j.issn.1000-3835.2011.03.050
    楼梦麟, 王文剑, 朱彤等, 2000. 土-结构体系振动台模型试验中土层边界影响问题. 地震工程与工程振动, 20(4): 30—36. doi: 10.3969/j.issn.1000-1301.2000.04.005

    Lou M. L., Wang W. J., Zhu T., et al., 2000. Soil lateral boundary effect in shaking table model test of soil-structure system. Earthquake Engineering and Engineering Vibration, 20(4): 30—36. (in Chinese) doi: 10.3969/j.issn.1000-1301.2000.04.005
    王雪剑, 庄海洋, 陈国兴等, 2017. 地下连续墙对叠合墙式地铁车站结构地震反应的影响研究. 岩土工程学报, 39(8): 1435—1443. doi: 10.11779/CJGE201708010

    Wang X. J., Zhuang H. Y., Chen G. X., et al., 2017. Effect of diaphragm wall on earthquake responses of an underground subway station. Chinese Journal of Geotechnical Engineering, 39(8): 1435—1443. (in Chinese) doi: 10.11779/CJGE201708010
    杨靖, 云龙, 庄海洋等, 2020. 三层三跨框架式地铁地下车站结构抗震性能水平研究. 岩土工程学报, 42(12): 2240—2248.

    Yang J., Yun L., Zhuang H. Y., et al., 2020. Seismic performance levels of frame-type subway underground station with three layers and three spans. Chinese Journal of Geotechnical Engineering, 42(12): 2240—2248. (in Chinese)
    中华人民共和国住房和城乡建设部, 2019. GB/T 51336—2018 地下结构抗震设计标准. 北京: 中国建筑工业出版社, 36.

    Ministry of Housing and Urban-Rural Development, 2019. GB/T 51336—2018 Standard for seismic design of underground structures. Beijing: China Architecture & Building Press, 36. (in Chinese)
    庄海洋, 陈国兴, 朱定华, 2006. 土体动力粘塑性记忆型嵌套面本构模型及其验证. 岩土工程学报, 28(10): 1267—1272. doi: 10.3321/j.issn:1000-4548.2006.10.017

    Zhuang H. Y., Chen G. X., Zhu D. H., 2006. Dynamic visco-plastic memorial nested yield surface model of soil and its verification. Chinese Journal of Geotechnical Engineering, 28(10): 1267—1272. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.10.017
    庄海洋, 程绍革, 陈国兴, 2008. 阪神地震中大开地铁车站震害机制数值仿真分析. 岩土力学, 29(1): 245—250. doi: 10.3969/j.issn.1000-7598.2008.01.046

    Zhuang H. Y., Cheng S. G., Chen G. X., 2008. Numerical simulation and analysis of earthquake damages of Dakai metro station caused by Kobe earthquake. Rock and Soil Mechanics, 29(1): 245—250. (in Chinese) doi: 10.3969/j.issn.1000-7598.2008.01.046
    庄海洋, 陈国兴, 2009. 对土体动力黏塑性记忆型嵌套面模型的改进. 岩土力学, 30(1): 118—122. doi: 10.3969/j.issn.1000-7598.2009.01.019

    Zhuang H. Y., Chen G. X., 2009. Improvement of dynamic viscoplastic memorial nested yield surface model of soil. Rock and Soil Mechanics, 30(1): 118—122. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.01.019
    庄海洋, 吴祥祖, 陈国兴, 2011. 考虑初始静应力状态的土—地下结构非线性静、动力耦合作用研究. 岩石力学与工程学报, 30(S1): 3112—3119.

    Zhuang H. Y., Wu X. Z., Chen G. X., 2011. Study of nonlinear static and dynamic coupling interaction of soil-underground structure considering initial static stress. Chinese Journal of Rock Mechanics and Engineering, 30(S1): 3112—3119. (in Chinese)
    庄海洋, 龙慧, 陈国兴, 2013. 复杂大型地铁地下车站结构非线性地震反应分析. 地震工程与工程振动, 33(2): 192—199.

    Zhuang H. Y., Long H., Chen G. X., 2013. Analysis of the nonlinear earthquake responses of a large complicated subway underground station. Journal of Earthquake Engineering and Engineering Vibration, 33(2): 192—199. (in Chinese)
    庄海洋, 王雪剑, 王瑞等, 2017. 土-地铁动力相互作用体系侧向变形特征研究. 岩土工程学报, 39(10): 1761—1769. doi: 10.11779/CJGE201710002

    Zhuang H. Y., Wang X. J., Wang R., et al., 2017. Characteristics of lateral deformation of soil-subway dynamic interaction system. Chinese Journal of Geotechnical Engineering, 39(10): 1761—1769. (in Chinese) doi: 10.11779/CJGE201710002
    庄海洋, 付继赛, 朱明轩等, 2019. 柱顶设置滑移支座时地铁地下车站结构抗震性能分析. 隧道与地下工程灾害防治, 1(3): 57—67.

    Zhuang H. Y., Fu J. S., Zhu M. X., et al., 2019. Seismic performance of underground subway station with elastic slipping bearing fixed on the top of columns. Hazard Control in Tunnelling and Underground Engineering, 1(3): 57—67. (in Chinese)
    BSI, 2011. BS 5975: 2008 + A1: 2011 Code of practice for temporary works procedures and the permissible stress design of false work. BSI.
    Chen Z. Y., Chen W., Bian G. Q., 2014. Seismic performance upgrading for underground structures by introducing shear panel dampers. Advances in Structural Engineering, 17(9): 1343—1357. doi: 10.1260/1369-4332.17.9.1343
    Chen Z. Y., Liu Z. Q., 2018. Effects of central column aspect ratio on seismic performances of subway station structures. Advances in Structural Engineering, 21(1): 14—29. doi: 10.1177/1369433217706777
    Lee J., Fenves G. L., 1998. Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics, 124(8): 892—900. doi: 10.1061/(ASCE)0733-9399(1998)124:8(892)
    Li W. T., Chen Q. J., 2018. Seismic performance and failure mechanism of a subway station based on nonlinear finite element analysis. KSCE Journal of Civil Engineering, 22(2): 765—776. doi: 10.1007/s12205-017-1840-y
    Lubliner J., Oliver J., Oller S., et al., 1989. A plastic-damage model for concrete. International Journal of Solids and Structures, 25(3): 299—326. doi: 10.1016/0020-7683(89)90050-4
    Ma C., Lu D. C., Du X. L., 2018. Seismic performance upgrading for underground structures by introducing sliding isolation bearings. Tunnelling and Underground Space Technology, 74: 1—9. doi: 10.1016/j.tust.2018.01.007
    Tso W. K., Zhu T. J., Heidebrecht A. C., 1992. Engineering implication of ground motion A/V ratio. Soil Dynamics and Earthquake Engineering, 11(3): 133—144. doi: 10.1016/0267-7261(92)90027-B
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  8
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-22
  • 刊出日期:  2021-03-31

目录

    /

    返回文章
    返回