• ISSN 1673-5722
  • CN 11-5429/P

张家口地区精细化地震灾害风险评估

李姜 张合 刘志辉

宫杰,张朋,张扬,张敏,王佳,居海华,2022. 江苏省测震台网井下地震计方位角检测. 震灾防御技术,17(1):181−187. doi:10.11899/zzfy20220119. doi: 10.11899/zzfy20220119
引用本文: 李姜,张合,刘志辉,2021.  张家口地区精细化地震灾害风险评估. 震灾防御技术,16(1):134−145.   doi:10.11899/zzfy20210114. doi: 10.11899/zzfy20210114
Gong Jie, Zhang Peng, Zhang Yang, Zhang Min, Wang Jia, Ju Haihua. Borehole Seismometer Azimuth Detection in Jiangsu Seismic Network[J]. Technology for Earthquake Disaster Prevention, 2022, 17(1): 181-187. doi: 10.11899/zzfy20220119
Citation: Li Jiang, Zhang He, Liu Zhihui. Refined Risk Assessment of Earthquake Disaster in Zhangjiakou Area[J]. Technology for Earthquake Disaster Prevention, 2021, 16(1): 134-145. doi: 10.11899/zzfy20210114

张家口地区精细化地震灾害风险评估

doi: 10.11899/zzfy20210114
基金项目: 河北省地震动力学重点实验室开放基金(FZ202213);河北省科技厅重点研发计划项目(18275404D);中国地震局地震应急青年重点任务(CEA_EDEM-202003)
详细信息
    作者简介:

    李姜,女,生于1989年。工程师。主要从事地震应急、灾害风险分析工作。E-mail:lj_001.5@163.com

    通讯作者:

    张合,男,生于1979年。高级工程师。主要从事地震应急、灾害风险分析工作。E-mail:13673161551@163.com

Refined Risk Assessment of Earthquake Disaster in Zhangjiakou Area

  • 摘要:

    本文从地震灾害、建筑物、人口、经济、抗震救灾等多方面出发,将自然属性与社会属性进行有效结合,对地震危险性、建筑物抗震性能等影响因素进行详细分析,构建城镇地震灾害风险评价指标体系,以张家口地区16个县区为例,采用专家-层次分析法,建立精细化地震灾害风险评估模型。研究结果表明,城镇建筑物抗震性能普遍较差,怀来县地震灾害风险最大,桥东区、蔚县、涿鹿县、桥西区次之,沽源县、康保县地震灾害风险最小,并对各县区地震灾害风险主要影响因素进行讨论,发现地震风险指数与地形结构、建筑物抗震性能具有相关性,评估结果可为城镇制定防震减灾规划提供依据。

  • 随着社会城市化发展进程的不断加快,地震监测环境面临严峻挑战,井下地震观测凭借其恒温、气流稳定、信噪比高等优势逐渐得到应用(宫杰等,2019樊晓春等,2020贾媛等,2020)。相比地面地震计,井下地震计受台站外部条件、磁性环境、定位设备精度、地震计底座固定情况、摆线应力释放等因素制约,方位角检测结果往往存在较大偏差,对利用地震观测数据开展各向异性、面波频散、接收函数及震源机制解等研究产生影响(陈继锋等,2016李少睿等,2016张明等,2019),因此针对井下地震计方位角的检测与校正尤为重要。

    目前,井下地震计方位角计算分析方法主要包括基于P波质点偏振原理的多地震事件信噪比加权叠加方法及基于地面井下双地震计对比观测的相关分析法(Niu等,2011李少睿等,20122016谢剑波,2014)。Aster等(1991)利用近震初至P波质点运动计算获得精度5°以内的井下地震计方位角,李少睿等(2016)通过开展不同频带地震计、不同台站址及不同距离的大量对比试验,结果表明相关分析法可使井下地震计计算精度达4°以内。

    2016年,江苏省地震局利用数据波形相关分析法对省内14个深井台站开展井下地震计方位角普查工作。此外,利用数据波形相关分析法对2018年起江苏地区新建井下地震计进行方位角检测存档。本文梳理目前江苏地区部分正在运行井下地震计方位角结果,并展开讨论,以新建溧阳2地震台站井下地震计为例,论述计算结果正确性,最后依托数据波形相关分析法,结合实际方位角检查过程,开展滤波频带研究。

    目前,江苏地区共运行35套井下地震设备,其中宝应地震台站采用CMG-3TB型120 s~50 Hz甚宽频地震计,如皋地震台站采用TBG-60B型60 s~50 Hz一体化宽频带地震计,其余均为GL-S60B型60 s~50 Hz宽频带地震计。沛县、淮安、大丰、海安、阳光岛深井台站均由JDF系列宽频带地震计更改为GL-S60B型地震计,由于原有设备底座与更改后井下地震计密封桶相匹配,因此保留原有设备底座,改造后安装深度不变。本文共涉及22个井下地震计方位角检测,基本信息如表1所示。其中,溧阳地震台站、兴化地震台站原井下设备暂且保留。

    表 1  井下地震台基本信息
    Table 1.  The fundamental information of borehole seismic stations
    台站名代码台基岩性安装深度/m安装方式地震计型号频带范围数采型号采样率/Hz
    沛县PX石英砂280卡壁JDF-220 s~20 HzEDAS-24IP100
    280卡壁GL-S60B60 s~50 HzEDAS-24GN100
    淮安HUA松散沉积层315卡壁JDF-220 s~50 HzEDAS-24IP100
    315卡壁GL-S60B60 s~50 HzEDAS-24GN100
    海安HA松散沉积层425卡壁JDF-3120 s~50 HzEDAS-24GN100
    425卡壁GL-S60B60 s~50 HzEDAS-24GN100
    大丰DF松散沉积层409卡壁JDF-3120 s~50 HzEDAS-24GN100
    409卡壁GL-S60B60 s~50 HzEDAS-24GN100
    阳光岛YGD基岩530卡壁JDF-3120 s~50 HzEDAS-24GN100
    530卡壁GL-S60B60 s~50 HzEDAS-24GN100
    泰州TZ沉积岩500落底GL-S60B60 s~50 HzEDAS-24GN100
    盐城YC松散沉积层410卡壁GL-S60B60 s~50 HzEDAS-24GN100
    宝应BY石英砂450卡壁CMG-3TB120 s~50 HzEDAS-24GN100
    射阳SY松散沉积层460卡壁GL-S60B60 s~50 HzEDAS-24GN100
    如东RD灰岩450落底GL-S60B60 s~50 HzEDAS-24GN100
    启东QD灰岩410落底GL-S60B60 s~50 HzEDAS-24GN100
    溧阳LY安山玄武岩80落底GL-S60B60 s~50 HzEDAS-24GN100
    溧阳2LY2安山玄武岩203落底GL-S60B60 s~50 HzEDAS-24GN100
    高邮GY松散沉积层452落底GL-S60B60 s~50 HzEDAS-24GN100
    南通NT石英砂159卡壁GL-S60B60 s~50 HzEDAS-24GN100
    兴化XH混合花岗岩490落底GL-S60B60 s~50 HzEDAS-24GN100
    兴化2XH2混合花岗岩510卡壁GL-CS60B60 s~50 HzEDAS-24GN100
    涟水LAS石英岩400落底GL-S60B60 s~50 HzEDAS-24GN100
    丰县FX石英砂405落底GL-S60B60 s~50 HzEDAS-24GN100
    李堡LIB松散沉积层450落底GL-CS60B60 s~50 HzEDAS-24GN100
    坪山PIS泥岩425落底GL-S60B60 s~50 HzEDAS-24GN100
    扬中YAZ泥岩416落底GL-CS60B60 s~50 HzEDAS-24GN100
    下载: 导出CSV 
    | 显示表格

    相关分析法广泛应用于描述2个随机变量之间的相似程度。首先在待测深井台站井口附近地面安装地面地震计,并以寻北仪精确指北,此地面地震计作为参考地震计与井下待测地震计进行相关分析:

    $$ x={x}_{1}\mathrm{cos}\varphi +{y}_{1}\mathrm{sin}\varphi $$ (1)
    $$ y=-{x}_{1}\mathrm{sin}\varphi +{y}_{1}\mathrm{cos}\varphi $$ (2)
    $$ {R}_{x{x}{'}}=\frac{\displaystyle\sum (x-\overline{x})({x}{'}-\overline{{x}{'}})}{\sqrt{\displaystyle\sum {(x-\overline{x})}^{2}}\sqrt{\displaystyle\sum {({x}{'}-\overline{{x}{'}})}^{2}}} $$ (3)
    $$ {R}_{y{y}{'}}=\frac{\displaystyle\sum (y-\overline{y})({y}{'}-\overline{{y}{'}})}{\sqrt{\displaystyle\sum {(y-\overline{y})}^{2}}\sqrt{\displaystyle\sum {({y}{'}-\overline{{y}{'}})}^{2}}} $$ (4)

    式中,$ {x}_{1} $$ {y}_{1} $分别为井下待测地震计EW和NS向分量数据,$ x $$ y $分别为井下待测地震计旋转$ \varphi $角度后EW和NS向分量数据,$ {x}{'} $$ {y}{'} $分别为地面参考地震计EW和NS向分量数据,$ {R}_{x{x}{'}} $$ {R}_{y{y}{'}} $分别为$ x $$ {x}{'} $$ y $$ {y}{'} $的相关系数(李少睿等,2020)。

    井下地震计方位角检测时,应尽量选择与井下地震计同频带的地震计作为地面参考,因地面与井下同频带地震计在滤波频段内相频特性曲线具有较小的相位差,可直接使用二者观测数据进行相关分析,获取较高精度的方位角检测结果。而当地面参考地震计与井下待测地震计观测频带相差较大时,若直接利用二者观测数据进行相关分析,滤波频段内相频特性曲线相位差将导致较大的方位角检测偏差,甚至出现180°的反向结果(李少睿等,2016)。此时应利用较短周期地震计传递函数,将地面与井下地震计中较宽频带地震计观测数据进行仿真处理。本文采用频域滤波法进行数据预处理,因低频段信号传播距离长、对比测试仪器记录相关性高,因此仅考虑地震观测系统低频段地震计特性,不考虑数据采集器高频段影响,计算公式如下:

    $$ y\left(t\right)=x\left(t\right)\cdot h\left(t\right) $$ (5)
    $$ Y\left(\omega \right)=X\left(\omega \right)\cdot H\left(\omega \right) $$ (6)
    $$ {Y}_{1}\left(\omega \right)={H}_{1}\left(\omega \right)\cdot \frac{Y\left(\omega \right)}{H\left(\omega \right)} $$ (7)

    式中,$ y\left(t\right) $为较宽频带地震计记录数据;$ x\left(t\right) $为地面真实运动;$ h\left(t\right) $为较宽频带地震计脉冲响应;$ Y\left(\omega \right) $$ X\left(\omega \right) $分别为$ y\left(t\right) $$ x\left(t\right) $的傅里叶变换;$ H\left(\omega \right) $为较宽频带地震计频域传递函数,$ {H}_{1}\left(\omega \right) $为较短周期地震计频域传递函数;$ {Y}_{1}\left(\omega \right) $为仿真数据的傅里叶变换谱。

    通过对$ {Y}_{1}\left(\omega \right) $进行傅里叶逆变换,可得到预处理后的时域数据。

    需强调的是,地面GL-S120型甚宽频地震计与井下GL-S60B型宽频带地震计在滤波频带内相频特性曲线具有较高的一致性,几乎不存在相位差,所以两者组合对比观测相关分析无需进行仿真处理。宝应、海安、大丰、阳光岛甚宽频井下地震计及部分GL-S60B型宽频带井下地震计选择GL-S120型甚宽频地震计作为地面参考地震计,无需进行仿真处理;剩余部分GL-S60B型宽频带井下地震计选择同频带地面GL-S60型宽频带地震计作为地面参考地震计,无需进行仿真处理。沛县、淮安JDF-2型宽频带井下地震计选择GL-S60型宽频带地震计作为地面参考地震计,因观测频带差异,需根据二者传递函数对GL-S60型地震计观测数据进行仿真处理。

    为获取较准确的井下地震计方位角,仅需对地面井下地震计观测数据进行滤波处理,以求井下待测地震计旋转一定角度后与地面参考地震计最大相关性。滤波频带的选择直接影响方位角计算精度。陆地与海洋相互作用在1~10 s频段存在明显波峰且较稳定(Peterson,1993),Lacoss等(1969)研究表明地脉动在0.2~0.3 Hz频段主要包含高阶模式瑞利面波及体波,而高阶模式瑞利面波主要能量集中于约半个波长深度内,基本覆盖井下地震计安装深度,因此在地面与井下地震计间具有较高相关性。本文主要以0.2~0.3 Hz作为滤波频段,开展井下地震计方位角检测。

    井下地震计方位角检测过程中,地面参考地震计寻北采用NV-NF301型寻北仪,精度达0.3°。地面参考地震计采用GL-S120型甚宽频地震计和GL-S60型宽频带地震计,具体参数如表2所示,分别配备的2套EDAS-24GN型数据采集器量程为±10 V,采样率为100 Hz,最小相位滤波,转换因子为1 192 nV/count。

    表 2  地面参考地震计参数
    Table 2.  The parameters of ground referenceseismometer
    地震计型号地震计序列号频带范围电压灵敏度/ V·m−1·s−1
    UD分向EW分向NS分向
    GL-S120G14408VS120 s~50 Hz1 993.761 986.201 994.00
    GL-S60G11842VS60 s~50 Hz2 002.262 000.322 005.64
    下载: 导出CSV 
    | 显示表格

    考虑地震计内部水平向分量正交性误差等因素,单台站检测结果以24 h的2个水平向分量均值为准,井下地震计方位角检测结果如表3所示。

    表 3  井下地震计方位角检测结果
    Table 3.  The azimuth detection results of borehole seismometers
    台站名测试地震计型号参考地震计型号滤波频带/Hz参考地震计方位角/°测试地震计方位角/°校正后井下方位角/°相关系数
    沛县JDF-2GL-S600.2~0.3359.9186.2186.10.921 89
    淮安JDF-2GL-S600.2~0.3359.6166.7166.30.895 56
    GL-S60BGL-S600.2~0.30.150.250.10.992 51
    海安JDF-3GL-S1200.2~0.3359.9146.2146.10.814 48
    GL-S60BGL-S600.2~0.3359.9314.8314.70.997 47
    大丰JDF-3GL-S1200.2~0.3359.8184.1183.90.831 92
    GL-S60BGL-S600.2~0.30.1122.3122.40.990 79
    阳光岛JDF-3GL-S1200.2~0.30.2162.4162.60.800 07
    GL-S60BGL-S600.2~0.3359.6340.6340.20.960 31
    泰州GL-S60BGL-S1200.2~0.30.0−4.5−4.50.928 45
    盐城GL-S60BGL-S1200.2~0.30.0−137.3−137.30.900 50
    宝应CMG-3TBGL-S1200.2~0.3359.86.86.60.963 71
    射阳GL-S60BGL-S600.1~0.2359.6346.0345.60.968 96
    如东GL-S60BGL-S600.2~0.30.3329.9330.20.937 37
    启东GL-S60BGL-S600.2~0.30.06.26.20.823 46
    溧阳GL-S60BGL-S600.2~0.30.3−2.2−1.90.917 73
    溧阳2GL-S60BGL-S600.2~0.30.0176.5176.50.997 48
    高邮GL-S60BGL-S600.2~0.3359.8299.5299.30.975 95
    南通GL-S60BGL-S1200.2~0.3359.5347.4346.90.997 02
    兴化GL-S60BGL-S600.2~0.3359.384.383.60.988 24
    兴化2GL-CS60BGL-S600.2~0.30.0299.9299.90.990 08
    涟水GL-S60BGL-S600.2~0.30.0233.3233.30.938 00
    丰县GL-S60BGL-S600.2~0.30.0301.8301.80.956 90
    李堡GL-CS60BGL-S600.2~0.3359.6147.5147.10.998 01
    坪山GL-S60BGL-S600.2~0.30.186.686.70.979 15
    扬中GL-CS60BGL-S600.2~0.30.6211.8212.40.996 99
    下载: 导出CSV 
    | 显示表格

    表3可知,井下地震计方位角受多因素制约,普遍存在较大偏差,其中沛县、淮安、海安、大丰、阳光岛深井台站使用的JDF系列宽频带地震计方位角偏差约为180°,大致反向,这可能与其安装工艺有关。需强调的是,上述5个水平向分量极性反向的JDF系列井下宽频带地震计方位角检测结果可结合测震台网观测数据远震P波极性分析结果得到验证。此外,这5个深井台站经更改后虽使用原有设备底座,但新地震计放入密封桶方位校正后安装在原有底座上,井下地震计方位角必定发生变化。因此,在深井台站井下地震计更改或维修时,如重新下井,须重新开展井下地震计方位角检测工作,及时更新、掌握运行状态。

    为深入研究JDF-2井下地震计方位角检测情况,给出沛县及淮安台站仿真与未仿真时24 h平均检测结果,如表4所示。由表可知,未仿真情况下,沛县、淮安台站JDF-2井下地震计方位角检测结果相关系数平均值约为0.83;南北向分量相关系数较大,达0.9;东西向分量相对相关系数较小,约为0.7。依据GL-S60、JDF-2型地震计传递函数对GL-S60型地震计观测数据进行仿真处理,相关系数平均值提高至0.9左右,东西向分量相关系数提高至0.8以上。利用不同频带地震计进行井下地震计方位角检测时,对较宽频带地震计进行仿真处理尤为重要。

    表 4  沛县、淮安台站24 h平均检测结果
    Table 4.  24-hour average azimuth detection results of Peixian、Huaian
    台站状态东西向分量南北向分量平均值
    相对方位角/º相关系数相对方位角/º相关系数相对方位角/º相关系数
    沛县仿真185.30.882 14187.00.961 63186.10.921 89
    未仿真188.00.697 36186.00.962 12186.80.829 74
    淮安仿真164.70.846 90168.60.944 21166.30.895 56
    未仿真160.10.729 65169.10.955 54164.60.842 60
    下载: 导出CSV 
    | 显示表格

    井下地震计方位角检测过程中,基本采用0.2~0.3 Hz滤波频带,但射阳台站除外。当采用0.2~0.3 Hz滤波频带时,射阳台站井下地震计方位角检测相关系数约为0.69,改为0.1~0.2 Hz滤波频带后,相关系数提高至约0.97。

    表3可知,利用相关分析法计算溧阳2新建GL-S60B型井下宽频带地震计方位角为176.5°,水平向分量几乎反向。为证明相关分析法在井下地震计方位角检测中的可信性,以溧阳2新建井下地震计为例,利用初至震相相对清晰的远震所在时段进行相关性分析,并结合P波进行极性分析,以进行直观比较。本文选取2020年5月6日印尼班达海7.2级地震,远震所处时段地震计方位角为176.8°,相关系数达0.998 86,地面参考地震计及井下待测地震计记录的原始波形如图1所示。

    图 1  印尼班达海7.2级地震原始波形
    Figure 1.  Indonesia Banda Sea M7.2 earthquake

    地面参考地震计经寻北仪指北校准,由图1可知地面与井下地震计初至震相清晰,其中垂直向分量具有较高相似性,初至P波同时向上;水平向分量出现差异,初至震相就振幅而言同时表现为东西向分量小、南北向分量大,但初至方向不同,地面参考地震计东西向分量初至向下,南北向分量向上,而井下待测地震计东西向分量初至向上,南北向分量向下。地面与井下地震计远震初至P波水平向分量几乎反向,这与相关分析法计算结果一致,由此印证了相关分析法应用于井下地震计方位角检测中具有较高可靠性,也验证本文利用相关分析法获取的江苏测震台网井下地震计方位角结果可信。

    当滤波频带改为0.1~0.2 Hz后,射阳台站井下地震计方位角检测相关系数得到大幅提高,可知滤波处理可获取较高的相关性,从而得到精度较高的方位角结果。台基噪声是评定地震观测环境质量的重要指标之一(宫杰等,2020),本文针对射阳台站井下地震计观测数据进行台基噪声分析,结合台基噪声功率谱密度(PSD)计算深入分析滤波频带与相关性的内在联系,选取射阳台站GL-S60B型井下宽频带地震计方位角2016年9月7日00时的检测数据,功率谱密度曲线如图2所示。

    图 2  射阳台站井下地震计台基噪声功率谱密度曲线
    Figure 2.  Borehole seismometer power spectrum curve of Sheyang station

    图2可知,射阳台站井下地震计所记录的台基噪声功率谱处于地球高噪声模型(NHNM)和地球低噪声模型(NLNM)之间,属于正常噪声水平。密度曲线垂直向分量在0.2~0.3 Hz频段内存在明显波峰;对于水平向分量,0.1~0.6 Hz频段内具有较高一致性,0.1~0.2 Hz频段内存在明显波峰,0.15 Hz左右功率谱密度显著高于两侧,0.2~0.4 Hz频段较平坦,缓慢升至0.6 Hz时达到波峰。由此可判断采用相关分析法计算井下地震计方位角时,地面与井下地震计相关性与滤波频带内台基噪声功率谱密度曲线形态有关。选择滤波频带内存在明显波峰的频段有利于提高地面与井下地震计相关性,滤波频带内功率谱密度曲线相对平坦会导致较低的相关性,从而影响方位角检测精度。射阳台站滤波频带不同于其他台站,可能与地质构造、台站环境等因素有关。对于大多数深井台站而言,选择0.2~0.3 Hz滤波频段开展井下地震计方位角检测是可行的,如出现相关性较低的情况,可从台基噪声入手,深入分析功率谱密度曲线形态,尽可能选择具有明显波峰的频段作为滤波频段。若无法解算台基噪声功率谱密度曲线,可分别选择0.1~0.2 Hz、0.2~0.3 Hz、0.3~0.4 Hz滤波频段,选取相关性较高的检测结果。

    江苏省测震台网深井台站较多,具有频段宽、安装深度大等特点,本文分析2016年以来井下地震计方位角检测结果,得出以下结论:

    (1)受台站外部条件、磁性环境、定位设备精度、地震计底座固定情况、摆线应力释放等因素制约,井下地震计方位角检测结果普遍存在较大偏差,包含JDF系列在内的部分井下地震计水平向分量甚至出现反向现象。无论是否更换底座,涉及提井时,井下地震计方位角必定发生变化,因此每次提井时须重新开展方位角检测工作,及时更新、掌握仪器运行状态。

    (2)就相关性而言,不同频带地震计组合检测井下地震计方位角,应利用二者传递函数对较宽频地震计进行仿真处理,有利于提高二者相关性,从而获得较精确的检测结果。当地面参考地震计与井下待测地震计同频带时,相关系数普遍较高。

    (3)以溧阳2台站新建井下地震计为例,通过远震P波极性分析法直观反映出地面与井下地震计水平向分量几乎反向,与相关分析法得到的结论一致,从而验证相关分析法应用于井下地震计方位角检测是正确可行的,也证明了本文获得的江苏省测震台网井下地震计方位角检测结果是真实可信的。

    (4)计算分析射阳台站井下地震计记录台基噪声功率谱密度曲线,可知应选择功率谱密度曲线具有明显波峰频段作为滤波频段,有利于获得较高的相关性,从而得到较精确的井下地震计方位角检测结果。

  • 图  1  城镇地震灾害风险评价指标

    Figure  1.  Urban earthquake disaster risk assessment index

    图  2  张家口地区地震动参数区域划分图

    Figure  2.  Regional division of ground motion parameters in Zhangjiakou area

    图  3  各区县房屋抗震性能指数分布图

    Figure  3.  Distribution of seismic performance index of buildings in different counties (districts)

    图  4  张家口房屋抗震性能参数分布图

    Figure  4.  Geomorphic distribution of seismic performance parameters of Zhangjiakou buildings

    图  5  张家口地区风险因子分析结果

    Figure  5.  Analysis result map of risk factors in Zhangjiakou

    图  6  张家口地区风险因子分析结果(叠加地形图)

    Figure  6.  Risk factor analysis result map of Zhangjiakou area (superimposed topographic map)

    表  1  张家口地区地震灾害风险评估指标体系解释

    Table  1.   Interpretation of index system of earthquake disaster risk assessment in Zhangjiakou area

    指标含义
    地震强度主要包括地震动参数和断层指标
    地震频度统计张家口地区1970年以来4级以上地震发生的次数
    爆炸、毒气放射源主要考查各类化工厂、化肥厂和农药厂发生泄漏与爆炸的危险性
    次生火灾主要考查工业易燃物指标和重点防火区密度等因素
    次生水灾主要考查评价地区水库和河流数等因素
    滑坡主要考查穿越山谷公路里程数以及岩层坚实程度等因素
    泥石流主要考查地质构造和降雨等因素
    人口密度单位面积土地上居住的人口数
    人口增长率一年内新增人口占原有人口的比例
    人口流动性主要考查每日城镇居民通勤流动活跃度
    每平方公里建筑物面积主要考查建筑物面积占该地区实际面积比例
    建筑物增长率统计近5年建筑物年均增长率
    老年人抚养比统计非劳动年龄人口数中老年人部分占劳动年龄人数之比
    少年儿童抚养比统计少年儿童人数占劳动年龄人数之比
    建筑物抗震性能情况主要考查建筑物在面对地震灾害时的承受能力
    GDP增长情况统计近5年人均GDP增长率
    失业率统计失业人口占劳动人口的比例
    人均收入主要反映个人防灾能力的指标
    医生比例从医疗能力方面进行考查的指标
    病床数从医疗能力方面进行考查的指标
    救援力量从该地区物资储备、救援队伍规模等方面进行衡量
    避难场所依据人均绿地面积即城镇公共绿地面积与城镇非农业人口之比进行考查
    每平方公里道路面积现有公路面积与该地区总面积之比
    每平方公里河流桥梁数现有河流桥梁数与该地区河流总面积之比
    下载: 导出CSV

    表  2  判断矩阵标度及其含义

    Table  2.   The scale of judgment matrix and its meaning

    序号重要性等级Cxy赋值序号重要性等级Cxy赋值
    1元素xy同等重要16元素x较元素y稍不重要1/3
    2元素x较元素y稍重要37元素x较元素y明显不重要1/5
    3元素x较元素y明显重要58元素x较元素y强烈不重要1/7
    4元素x较元素y强烈重要79元素x较元素y极端不重要1/9
    5元素x较元素y极端重要9
    下载: 导出CSV

    表  3  城镇地震灾害风险评价指标权重

    Table  3.   Index weight of urban earthquake disaster risk assessment

    因子层副因子层指标层权重
    危险性(h)0.4957直接危险性0.7656地震强度0.80.3036
    地震频度0.20.0759
    次生危险性0.2344爆炸、毒气放射源0.06360.0074
    次生火灾0.31180.0366
    次生水灾0.06520.0076
    滑坡0.34340.0399
    泥石流0.21610.0251
    暴露性(e)0.2001人口0.7916人口密度0.67370.1067
    人口增长率0.18890.0299
    人口流动性0.13740.0218
    建筑物0.208每平方公里建筑物面积0.7640.0318
    建筑物增长率0.23580.0098
    脆弱性(v)0.1245人口0.2275老年人抚养比0.2020.0057
    少年儿童抚养比0.7970.0227
    建筑物0.4143建筑物抗震性能情况10.0516
    经济情况0.3582GDP增长情况0.7660.0342
    失业率0.2340.0104
    抗震救灾能力(c)0.1797自救资源0.766人均收入0.4430.0610
    医生比例0.41540.0572
    病床数0.14030.0193
    流通性0.234救援力量0.45820.0193
    避难场所0.31080.0131
    每平方公里道路面积0.13630.0057
    每平方公里河流桥梁数0.09480.0040
    下载: 导出CSV

    表  4  张家口地区地震动参数(地震强度)

    Table  4.   Parameter table of ground motion parameters (earthquake intensity) in Zhangjiakou area

    编号区/县$ {{\rm{\alpha }}_{{\rm{maxII}}}}$编号区/县$ {{\rm{\alpha }}_{{\rm{maxII}}}}$
    1桥东区0.1559蔚县0.156
    2桥西区0.15210阳原县0.173
    3宣化区0.15611怀安县0.155
    4下花园区0.19912万全区0.162
    5张北县0.13013怀来县0.216
    6康保县0.07214涿鹿县0.22
    7沽源县0.05315赤城县0.107
    8尚义县0.12416崇礼区0.104
    下载: 导出CSV

    表  5  张家口地区房屋建筑结构抗震性能参数表

    Table  5.   Table of seismic performance parameters of building structures in Zhangjiakou area

    序号房屋类型代表符号参数
    1砖混结构JG10.8
    2砖木结构JG20.5
    3土木结构JG30.2
    4土坯结构JG40.1
    下载: 导出CSV

    表  6  张家口地区房屋场地条件性能参数表

    Table  6.   Table of performance parameters of house site conditions in Zhangjiakou area

    序号分类代表符号参数
    1有利地段Cd11.0
    2一般地段Cd20.9
    3不利地段Cd30.7
    4危险地段Cd40.5
    下载: 导出CSV

    表  7  张家口地区房屋抗震措施抗震性能参数表

    Table  7.   Table of seismic performance parameters of buildings in Zhangjiakou area

    序号分类代表符号参数
    1有措施CS11.0
    2无措施CS20.7
    下载: 导出CSV

    表  8  张家口地区房屋抗震性能指数

    Table  8.   Seismic performance index of buildings in Zhangjiakou area

    序号区县P序号区/县P
    1桥东区0.5009蔚县0.217
    2桥西区0.50010阳原县0.198
    3宣化区0.35411怀安县0.149
    4下花园区0.47012万全区0.303
    5张北县0.29313怀来县0.446
    6康保县0.23514涿鹿县0.305
    7沽源县0.22115赤城县0.273
    8尚义县0.25216崇礼区0.238
    下载: 导出CSV

    表  9  张家口地区地震灾害风险评估指标量化值

    Table  9.   Normalized value of earthquake disaster risk assessment index in Zhangjiakou area

    指标区县
    桥东区桥西区宣化区下花园区张北县康保县沽源县尚义县蔚县阳原县怀安县万全区怀来县涿鹿县赤城县崇礼区
    地震强度 0.70 0.69 0.71 0.90 0.59 0.33 0.24 0.56 0.71 0.79 0.70 0.74 0.98 1.00 0.49 0.47
    地震频度 0.00 0.00 0.12 0.03 1.00 0.00 0.00 0.06 0.06 0.03 0.03 0.06 0.12 0.03 0.03 0.00
    爆炸、毒气放射源 0.45 1.00 0.52 0.25 0.09 0.09 0.10 0.09 0.20 0.24 0.17 0.34 0.31 0.17 0.05 0.15
    次生火灾 0.97 0.86 0.88 1.00 0.81 0.32 0.27 0.38 0.54 0.56 0.75 0.86 0.81 0.91 0.95 0.43
    次生水灾 0.71 0.89 0.76 0.53 0.95 0.32 0.84 1.00 0.86 0.63 0.75 0.81 1.03 0.21 0.53 0.37
    滑坡 0.29 0.06 0.47 0.12 0.16 0.14 0.31 0.20 0.53 0.31 0.41 0.43 0.33 0.57 1.00 0.82
    泥石流 0.40 0.20 0.80 0.16 0.22 0.20 0.44 0.24 0.88 0.42 0.60 0.64 0.30 0.76 1.00 0.86
    人口密度 1.00 0.71 0.54 0.10 0.15 0.06 0.03 0.08 0.60 0.18 0.17 0.24 0.69 0.34 0.06 0.21
    人口增长率 0.85 0.56 0.55 0.30 0.36 −0.24 0.76 0.17 1.00 0.26 0.67 0.31 0.45 −0.01 0.92 0.16
    人口流动性 0.90 1.00 0.86 0.34 0.57 0.25 0.28 0.39 0.39 −0.16 0.20 0.32 0.26 0.15 0.27 0.38
    每平方公里建筑物面积 0.24 0.15 0.18 0.02 0.16 0.04 0.03 0.04 1.00 0.17 0.10 0.18 0.77 0.39 0.08 0.03
    建筑物增长率 0.45 1.00 0.73 0.33 0.57 0.15 0.12 0.00 0.01 0.15 0.04 0.30 0.27 0.31 0.61 0.65
    老年抚养比 0.72 0.73 0.79 0.96 0.87 0.88 0.77 0.93 0.86 0.91 0.98 0.92 0.74 0.80 1.00 0.93
    少年儿童
    抚养比
    0.49 0.53 0.66 0.52 0.74 0.69 0.68 0.74 1.00 0.92 0.77 0.81 0.70 0.71 0.84 0.69
    建筑物抗震性能情况 1.00 0.90 0.56 0.60 0.35 0.30 0.32 0.34 0.27 0.26 0.27 0.38 0.56 0.41 0.24 0.31
    GDP增长情况 0.22 0.68 −0.22 0.17 0.83 0.64 1.00 0.62 −0.01 −0.12 0.45 0.82 0.49 0.72 0.62 0.24
    失业率 0.91 0.96 0.68 0.73 0.89 0.91 0.56 0.80 0.62 0.73 0.84 0.93 1.00 0.68 0.89 0.70
    人均收入 1.00 0.92 0.73 0.73 0.50 0.44 0.45 0.40 0.50 0.41 0.48 0.55 0.67 0.58 0.50 0.53
    医生比例 0.40 1.00 0.35 0.28 0.18 0.18 0.16 0.20 0.19 0.23 0.22 0.24 0.20 0.22 0.18 0.27
    病床数 0.55 1.00 0.48 0.09 0.43 0.17 0.16 0.18 0.33 0.19 0.18 0.26 0.36 0.32 0.23 0.10
    救援力量 1.00 1.00 0.60 0.60 0.16 0.16 0.16 0.20 0.20 0.16 0.16 0.16 0.80 0.20 0.40 0.24
    避难场所 1.00 0.18 0.05 0.00 0.10 0.03 0.03 0.00 0.62 0.10 0.04 0.00 0.17 0.10 0.01 0.05
    每平方公里道路面积 0.57 0.30 0.24 0.04 0.40 0.06 0.05 0.07 1.00 0.17 0.13 0.35 0.65 0.24 0.07 0.04
    每平方公里河流桥梁数 0.45 0.79 0.95 0.82 0.15 0.03 0.06 0.13 0.29 0.76 0.66 1.00 0.84 0.42 0.24 0.40
    下载: 导出CSV

    表  10  张家口地区城镇地震灾害风险指数

    Table  10.   Urban earthquake disaster risk index in Zhangjiakou

    序号区/县IEDRI序号区/县IEDRI
    1桥东区0.0299蔚县0.027
    2桥西区0.0210阳原县0.008
    3宣化区0.01611怀安县0.015
    4下花园区0.00812万全区0.019
    5张北县0.01113怀来县0.038
    6康保县0.00214涿鹿县0.024
    7沽源县0.00715赤城县0.015
    8尚义县0.00816崇礼区0.008
    下载: 导出CSV

    表  11  张家口地区16个区县影响因素量化值

    Table  11.   Quantitative value of influencing factors in 16 counties of Zhangjiakou

    序号区/县DhDeDvDcIEDRI序号区/县DhDeDvDcIEDRI
    1桥东区0.741.000.870.830.769蔚县0.740.820.500.420.71
    2桥西区0.690.791.001.000.5310阳原县0.750.190.450.320.20
    3宣化区0.760.650.500.570.4211怀安县0.730.280.640.330.39
    4下花园区0.850.190.650.490.2112万全区0.770.310.850.390.51
    5张北县0.400.310.810.350.2813怀来县0.920.730.800.531.00
    6康保县0.330.050.710.280.0414涿鹿县1.000.330.770.390.64
    7沽源县0.300.210.790.270.1815赤城县0.660.290.700.340.39
    8尚义县0.530.150.720.280.2016崇礼区0.570.260.550.360.22
    下载: 导出CSV
  • 丁香, 王晓青, 王龙等, 2011. 地震巨灾风险评估系统的研制与应用. 震灾防御技术, 6(4): 454—460.

    Ding X., Wang X. Q., Wang L., et al., 2011. The development and application of catastrophe earthquake risk estimation system. Technology for Earthquake Disaster Prevention, 6(4): 454—460. (in Chinese)
    杜栋, 庞庆华, 吴彦, 2008. 现代综合评价方法与案例精选. 2版. 北京: 清华大学出版社.

    Du D., Pang Q. H., Wu Y., 2008. Modern comprehensive evaluation method and case selection. 2nd ed. Beijing: Tsinghua University Press. (in Chinese)
    侯林锋, 李大卫, 周新民, 2019. 基于指标体系的浙江省地震灾害风险评估. 华北地震科学, 37(4): 23—28.

    Hou L. F., Li D. W., Zhou X. M., 2019. Earthquake risk assessment in Zhejiang Province based on index system. North China Earthquake Sciences, 37(4): 23—28. (in Chinese)
    李昌珑, 李宗超, 吕红山等, 2019. 基于三维图像模式识别的西藏东南部地震灾害损失风险评估. 地球物理学报, 62(1): 393—410.

    Li C. L., Li Z. C., Lv H. S., et al., 2019. Seismic disaster loss risk assessment for southeastern Tibet based on 3D image pattern recognition. Chinese Journal of Geophysics, 62(1): 393—410. (in Chinese)
    李皓, 刘金龙, 江小林等, 2018. 2017年九寨沟7.0级地震灾害特点浅析. 震灾防御技术, 13(3): 679—688.

    Li H., Liu J. L., Jiang X. L., et al., 2018. Characteristic hazard analysis of the Jiuzhaigou MS 7.0 earthquake in 2017. Technology for Earthquake Disaster Prevention, 13(3): 679—688. (in Chinese)
    李津津, 张合, 温超, 2017. 河北省地震动参数区划图变化. 地震地磁观测与研究, 38(3): 185—190.

    Li J. J., Zhang H., Wen C., 2017. Partial changes of the seismic ground motion parameters zoning map of China in Hebei province. Seismological and Geomagnetic Observation and Research, 38(3): 185—190. (in Chinese)
    刘龙, 刘志辉, 刘晓丹等, 2019. 张北地区农村房屋抗震性能分析. 华北地震科学, 37(2): 82—88.

    Liu L., Liu Z. H., Liu X. D., et al., 2019. Analysis of the seismic performance of rural houses in the areas of Zhangbei. North China Earthquake Sciences, 37(2): 82—88. (in Chinese)
    刘晓丹, 刘志辉, 刘龙等, 2019. 张家口地区农村房屋建筑特征和抗震能力评价. 地震研究, 42(2): 158—165.

    Liu X. D., Liu Z. H., Liu L., et al., 2019. Features and seismic capacity evaluation of rural houses in Zhangjiakou Area. Journal of Seismological Research, 42(2): 158—165. (in Chinese)
    吕大刚, 于晓辉, 2013. 基于地震易损性解析函数的概率地震风险理论研究. 建筑结构学报, 34(10): 41—48.

    Lv D. G., Yu X. H., 2013. Theoretical study of probabilistic seismic risk assessment based on analytical functions of seismic fragility. Journal of Building Structures, 34(10): 41—48. (in Chinese)
    吕国军, 张合, 孙丽娜, 2016. 张家口地区农村房屋抗震性能调查分析研究. 地震工程学报, 38(S2): 302—307.

    Lv G. J., Zhang H., Sun L. N., 2016. Investigation and analysis of the earthquake resistance capability of rural houses in the Zhangjiakou Area. China Earthquake Engineering Journal, 38(S2): 302—307. (in Chinese)
    茅远哲, 曹筠, 高晨等, 2019. 京西北地区地应变观测与小震震源机制解一致性研究. 中国地震, 35(4): 709-717.

    Mao Y. Z., Cao J., Gao C., et al., 2019. Consistency of ground strain observation and source mechanism solution of small earthquakes in northwest Beijing. Earthquake Research in China, 35(4): 709—717. (in Chinese)
    明小娜, 陈勤, 周洋等, 2018. 云南地方政府地震应急准备能力评价指标与计算. 地震研究, 41(1): 132—138.

    Ming X. N., Chen Q., Zhou Y., et al., 2018. Evaluation index for earthquake preparedness capability of Yunnan local government and its calculation method. Journal of Seismological Research, 41(1): 132—138. (in Chinese)
    聂高众, 高建国, 马宗晋等, 2002. 中国未来10~15年地震灾害的风险评估. 自然灾害学报, 11(1): 68—73. doi: 10.3969/j.issn.1004-4574.2002.01.011

    Nie G. Z., Gao J. G., Ma Z. J., et al., 2002. On the risk of earthquake disaster in China in the coming 10~15 years. Journal of Natural Disasters, 11(1): 68—73. (in Chinese) doi: 10.3969/j.issn.1004-4574.2002.01.011
    唐丽华, 李山有, 宋立军, 2016. 地震灾害风险评估方法的对比分析——以乌鲁木齐市为例. 地震工程学报, 38(5): 838—845.

    Tang L. H., Li S. Y., Song L. J., 2016. Comparative analysis of earthquake risk assessment methods: a case study on Urumqi City. China Earthquake Engineering Journal, 38(5): 838—845. (in Chinese)
    肖凯灵, 2011. 城市地震灾害风险的损失评价研究. 西安: 西安石油大学.

    Xiao K. L., 2011. Study of loss assessment of urban earthquake disaster risk. Xi’an: Xi’an Shiyou University. (in Chinese)
    张春山, 张业成, 张立海, 2004. 中国崩塌、滑坡、泥石流灾害危险性评价. 地质力学学报, 10(1): 27—32.

    Zhang C. S., Zhang Y. C., Zhang L. H., 2004. Danger assessment of collapses, landslides and debris flows of geological hazards in China. Journal of Geomechanics, 10(1): 27—32. (in Chinese)
    张家口市人民政府, 2019. 张家口年鉴. 北京: 九州出版社.

    Zhangjiakou Municipal People's government, 2019. Zhangjiakou Yearbook. Beijing: Jiuzhou publishing house.(in Chinese)
    赵思健, 2012. 自然灾害风险分析的时空尺度初探. 灾害学, 27(2): 1—6, 18.

    Zhao S. J., 2012. A preliminary study on the spatial and temporal scales of natural disaster risk analysis. Journal of Catastrophology, 27(2): 1—6, 18. (in Chinese)
    赵真, 郭红梅, 张莹, 2020. 面向市县层级的地震灾害风险评估系统设计与实现. 震灾防御技术, 15(2): 419—430.

    Zhao Z., Guo H. M., Zhang Y., 2020. Design and implementation of earthquake disaster risk assessment system for county. Technology for Earthquake Disaster Prevention, 15(2): 419—430. (in Chinese)
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2016. GB/T 18306—2015 中国地震动参数区划图. 北京: 中国标准出版社.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, National Standardization Administration of China, 2016. GB/T 18306—2015 Seismic ground motion parameters zonation map of China. Beijing: Standards Press of China. (in Chinese)
    中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2010. GB/T 50011—2010 建筑抗震设计规范. 北京: 中国建筑工业出版社.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. 2010. GB/T 50011—2010 Code for seismic design of buildings. Beijing: China Architecture & Building Press. (in Chinese)
    周寅康, 1995. 自然灾害风险评价初步研究. 自然灾害学报, 4(1): 6—11.

    Zhou Y. K., 1995. Study on natural disaster risk assessment. Journal of Natural Disasters, 4(1): 6—11. (in Chinese)
    Schneider P. J., Schauer B. A., 2006. HAZUS-its development and its future. Natural Hazards Review, 7(2): 40—44.
    Silva V., Crowley H., Pagani M., et al., 2014. Development of the OpenQuake engine, the Global Earthquake Model’s open-source software for seismic risk assessment. Natural Hazards, 72(3): 1409—1427.
  • 加载中
图(6) / 表(11)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  36
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-09
  • 刊出日期:  2021-03-31

目录

/

返回文章
返回