• ISSN 1673-5722
  • CN 11-5429/P

青海共和盆地地应力状态与断层稳定性分析

王洪 王成虎 高桂云 陈念 周昊 安易飞

王洪,王成虎,高桂云,陈念,周昊,安易飞,2021. 青海共和盆地地应力状态与断层稳定性分析. 震灾防御技术,16(1):123−133. doi: 10.11899/zzfy20210113
引用本文: 王洪,王成虎,高桂云,陈念,周昊,安易飞,2021. 青海共和盆地地应力状态与断层稳定性分析. 震灾防御技术,16(1):123−133. doi: 10.11899/zzfy20210113
doi:10.11899/zzfy20210113. doi: 10.11899/zzfy20210113
Citation: doi:10.11899/zzfy20210113. doi: 10.11899/zzfy20210113

青海共和盆地地应力状态与断层稳定性分析

doi: 10.11899/zzfy20210113
基金项目: 国家自然科学基金(41574088)
详细信息
    作者简介:

    王洪,男,生于1994年。硕士研究生。主要从事区域地壳应力及岩石力学方面的研究工作。E-mail:wanghongxkd@163.com

    通讯作者:

    王成虎,男,生于1978年。研究员。主要从事地应力与地质力学、断层力学等方面的研究工作。E-mail:huchengwang@163.com

The State of the In-situ Stress and Fault Slide Evaluation of Gonghe Basin, Qinghai Provice

  • 摘要: 青海共和盆地地质构造条件复杂,断层十分发育,区域内既有地热、太阳能、矿产等资源丰富,存在龙羊峡水库诱发地震环境背景。因此,分析青海共和盆地地应力特征与地质结构易滑性对于青海东部地区防震减灾具有重要意义。对盆地及附近区域内19个钻孔、65条水压致裂数据和44条应力解除实测数据进行统计分析,并基于断层摩擦强度理论、Byerlee-Anderson理论等断层力学相关理论讨论了研究区域断层易滑性与地震危险性。研究结果表明:研究区域内应力状态在深度350 m左右由逆冲型转换为走滑型,与区域内分布北北西右旋高角度逆断层相吻合;区域内最大水平主应力优势方位为N45°~E60°;地应力场初步结果反演表明研究区域应力场以逆冲型为主,局部地区兼走滑特征,与震源机制解反演结果一致;区域内断层平均摩擦系数为0.41,断层处于稳定状态,即断层易滑性较低,侧压力系数与应力积累指标插值分析结果同样表明断层整体易滑性较低,局部浅部断层带应力积累水平较高,综合分析推测断层易沿NW-SE向滑动。
  • 图  1  青海共和盆地地质构造与地应力测量位置示意图

    注:S-1为龙羊峡电站测点,S-2、S-3为拉西瓦电站测点,S-4为李家峡电站测点,S-5为金川矿区测点,S-6为碌曲县玛艾乡测点

    Figure  1.  Schematic diagram of geological structure and geostress measurement location in Gonghe Basin, Qinghai

    图  2  主应力随深度变化规律

    Figure  2.  The principal stress varing with depth

    图  3  侧压力系数随深度变化规律

    Figure  3.  The lateral pressure coefficient varing with depth

    图  4  最大水平主应力方位

    Figure  4.  The orientation of the maximum horizontal principal stress

    图  5  滑移趋势分析结果

    Figure  5.  Slip trend analysis results

    图  6  μm随深度分布规律

    Figure  6.  μm distribution diagram with depth

    图  7  研究区域地震活动分布图(ML≥2.0)

    Figure  7.  Distribution map of seismic activity in the study area (ML≥2.0)

    图  8  研究区域附近历史地震震源机制解分布图

    Figure  8.  Distribution of focal mechanism solutions of historical earthquakes near the study area

    图  9  共和盆地及周边地区强余震震源机制综合解

    Figure  9.  Comprehensive solution of the focal mechanism of strong aftershocks in the Gonghe Basin and surrounding areas

    表  1  研究区域实测地应力数据

    Table  1.   Measured in-situ stress data in the study area

    编号测段号测量
    深度/m
    应力值/MPa印痕方向最大水平应力
    系数KH,max
    最小水平应力
    系数Kh,min
    侧应力
    系数Kav
    应力积累
    指标$ \mu _{\rm{m}}$
    最大水平
    正应力σH
    最小水平
    正应力σh
    垂直
    应力σv
    GH_ZK1 1 49.46 7.70 5.99 4.49 NE37° 1.71 1.33 1.52 0.26
    2 54.57 8.84 8.04 NE10° 5.97 5.43 5.70 0.71
    3 59.57 7.92 6.09 4.59 NW10° 1.73 1.33 1.53 0.27
    4 69.81 5.81 4.00 3.00 1.94 1.33 1.64 0.32
    5 78.57 7.02 4.70 3.90 1.80 1.21 1.51 0.29
    6 81.33 8.97 5.30 4.50 NW54° 1.99 1.18 1.59 0.33
    7 93.11 14.87 8.90 7.00 NW2° 2.12 1.27 1.70 0.36
    8 96.05 14.34 8.50 5.50 NW1° 2.61 1.55 2.08 0.45
    9 87.35 13.15 7.94 2.26 5.82 3.51 4.67 0.71
    10 94.45 9.99 7.20 2.44 NW64° 4.09 2.95 3.52 0.61
    11 84.95 12.75 7.30 5.54 3.17 4.36 0.69
    12 92.58 7.58 5.40 4.90 1.55 1.10 1.33 0.21
    13 98.59 3.72 3.50 2.60 1.43 1.35 1.39 0.18
    GH_ZK2 1 45.00 4.90 4.10 1.23 3.98 3.33 3.66 0.60
    2 59.00 5.50 3.90 1.61 NE61° 3.41 2.42 2.92 0.55
    3 85.00 6.50 5.20 2.32 NE21° 2.80 2.24 2.52 0.47
    4 113.00 15.30 9.00 3.09 NE41° 4.95 2.91 3.93 0.66
    5 183.00 32.90 16.80 5.00 NE53° 6.58 3.36 4.97 0.74
    GH_ZK3 1 45.00 11.90 7.70 1.23 NE17° 9.67 6.26 7.97 0.81
    2 165.00 22.30 11.70 4.51 NW6° 4.94 2.59 3.77 0.66
    GH_ZK4 1 84.00 4.40 3.30 2.30 NE25° 1.92 1.44 1.68 0.31
    2 162.00 6.20 4.10 4.43 NE30° 1.40 0.93 1.17 0.17
    3 164.00 6.20 4.20 4.48 NE33° 1.38 0.94 1.16 0.16
    GH_ZK5 1 147.00 7.50 5.00 4.02 NE36° 1.87 1.24 1.56 0.30
    2 266.00 9.70 7.20 7.27 NE40° 1.33 0.99 1.16 0.14
    3 284.00 8.40 6.30 7.76 NE42° 1.08 0.81 0.95 0.04
    GH_ZK6 1 238.00 17.80 10.40 6.51 NE37° 2.74 1.60 2.17 0.46
    2 335.00 17.20 10.40 9.16 NE32° 1.88 1.14 1.51 0.31
    3 367.00 22.00 13.20 10.03 NE43° 2.19 1.32 1.76 0.37
    GH_ZK7 1 41.00 5.50 3.90 1.12 NE61° 4.91 3.48 4.20 0.66
    2 67.00 6.50 5.20 1.83 NE21° 3.55 2.84 3.20 0.56
    3 94.00 15.30 9.00 2.57 NE41° 5.95 3.50 4.73 0.71
    4 165.00 32.90 16.80 4.51 NE53° 7.29 3.72 5.51 0.76
    GH_ZK8 1 45.00 11.10 7.70 1.23 NE17° 9.02 6.26 7.64 0.80
    2 165.00 22.30 11.70 4.51 NW6° 4.94 2.59 3.77 0.66
    GH_ZK9 1 212.00 10.10 8.10 5.80 NE54° 1.74 1.40 1.57 0.26
    2 220.00 10.50 8.70 6.01 NE70° 1.75 1.45 1.60 0.27
    3 235.00 11.10 8.80 6.42 NE48° 1.73 1.37 1.55 0.27
    GH_ZK10 1 138.00 6.90 4.50 3.77 NW75° 1.83 1.19 1.51 0.29
    2 140.00 7.50 5.70 3.83 NW86° 1.96 1.49 1.73 0.32
    3 144.00 8.50 5.60 3.94 NE68° 2.16 1.42 1.79 0.37
    GH_ZK11 1 186.00 7.30 6.30 5.09 NW64° 1.44 1.24 1.34 0.18
    2 190.00 7.80 6.40 5.19 NW81° 1.50 1.23 1.37 0.20
    3 198.00 9.00 5.40 5.41 NW70° 1.66 1.00 1.33 0.25
    GH_ZK12 1 244.00 8.80 7.40 6.67 NW72° 1.32 1.11 1.22 0.14
    2 252.00 9.60 7.40 6.89 NW76° 1.39 1.07 1.23 0.16
    3 254.00 7.10 5.20 6.94 NE80° 1.02 0.75 0.89 0.01
    GH_ZK13 1 147.00 7.50 4.50 4.02 NW0° 1.87 1.12 1.50 0.30
    2 163.00 9.70 6.40 4.46 NW85° 2.18 1.44 1.81 0.37
    3 179.00 11.60 6.60 4.89 NW80° 2.37 1.35 1.86 0.41
    GH_ZK14 1 148.00 8.10 6.10 4.05 NW65° 2.00 1.51 1.76 0.33
    2 150.00 11.00 7.10 4.10 NW82° 2.68 1.73 2.21 0.46
    3 158.00 10.40 7.20 4.32 NW69° 2.41 1.67 2.04 0.41
    GH_ZK15 1 306.00 12.60 7.30 8.37 NW70° 1.51 0.87 1.19 0.20
    2 312.00 13.20 7.90 8.53 NW83° 1.55 0.93 1.24 0.21
    3 322.00 12.60 8.20 8.80 NE83° 1.43 0.93 1.18 0.18
    GH_ZK16 1 290.00 9.10 5.50 7.93 NW64° 1.15 0.69 0.92 0.07
    2 294.00 8.40 5.60 8.04 NW82° 1.05 0.70 0.88 0.02
    3 300.00 10.60 6.60 8.20 NW73° 1.29 0.80 1.05 0.13
    GH_ZK17 1 250.00 11.00 6.50 6.84 NW74° 1.61 0.95 1.28 0.23
    2 252.00 11.80 6.80 6.89 NW85° 1.71 0.99 1.35 0.26
    3 258.00 12.00 6.90 7.05 NE80° 1.70 0.98 1.34 0.26
    GH_ZK18 1 480.00 23.60 13.00 13.12 NE44° 1.80 0.99 1.40 0.29
    2 492.00 24.80 13.40 13.45 NE42° 1.84 1.00 1.42 0.30
    GH_ZK19 1 264.00 11.90 6.60 7.22 NE15° 1.65 0.91 1.28 0.24
    2 267.00 13.10 7.10 7.30 1.79 0.97 1.38 0.28
    下载: 导出CSV

    表  2  300 m深度处测点Kμ

    Table  2.   K value and friction coefficient at a depth of 300 m

    测点KH,maxKh,min有效正应力σ/MPa剪应力
    τ/MPa
    μ
    GH_ZK 12.801.226.213.380.54
    GH_ZK 24.051.9410.675.320.50
    GH_ZK 31.720.674.021.840.46
    GH_ZK 41.820.864.311.800.42
    GH_ZK 51.410.984.180.890.21
    GH_ZK 62.411.316.412.540.40
    GH_ZK 74.001.9810.815.230.48
    GH_ZK 81.900.674.142.160.52
    GH_ZK 92.011.296.031.810.30
    GH_ZK 102.131.085.112.210.43
    GH_ZK 111.831.054.721.650.35
    GH_ZK 121.671.004.391.390.32
    GH_ZK 132.271.105.282.470.47
    GH_ZK 142.431.326.502.560.39
    GH_ZK 151.881.014.571.810.40
    GH_ZK 161.640.864.201.430.34
    GH_ZK 171.981.004.602.020.44
    GH_ZK 182.221.155.482.300.42
    GH_ZK 192.131.024.772.290.48
    下载: 导出CSV
  • [1] 安其美, 丁立丰, 王海忠等, 2004. 龙门山断裂带的性质与活动性研究. 大地测量与地球动力学, 24(2): 115—119.

    An Q. M., Ding L. F., Wang H. Z., et al., 2004. Research of property and activity of Longmen mountain fault zone. Journal of Geodesy and Geodynamics, 24(2): 115—119. (in Chinese)
    [2] 陈群策, 安其美, 孙东生等, 2010. 山西盆地现今地应力状态与地震危险性分析. 地球学报, 31(4): 541—548.

    Chen Q. C., An Q. M., Sun D. S., et al., 2010. Current in-situ stress state of Shanxi basin and analysis of earthquake risk. Acta Geoscientia Sinica, 31(4): 541—548. (in Chinese)
    [3] 丁仨平, 2008. 西秦岭—祁连造山带(东段)交接部位早古生代构造格架及构造演化. 西安: 长安大学.

    Ding S. P., 2008. Early Palaeozoic tectonic framework and evolution in the junction of Western Qinling orogenic belt and Qilian Orogenic belt. Xi’an: Chang’an University. (in Chinese)
    [4] 董治平, 姚政生, 雷芳, 1992. 青海东部活断层与现代构造应力场. 地壳形变与地震, 12(4): 64—71.

    Dong Z. P., Yao Z. S., Lei F., 1992. Active faults and modern tectonic stress field in the region of eastern Qinghai. Crustal Deformation and Earthquake, 12(4): 64—71. (in Chinese)
    [5] 都昌庭, 2001. 共和地震震源机制解特征. 高原地震, 13(4): 1—5.

    Du C. T., 2001. Characteristics of the mechanism solutions of Gonghe earthquakes. Plateau Earthquake Research, 13(4): 1—5. (in Chinese)
    [6] 黄禄渊, 杨树新, 崔效锋等, 2013. 华北地区实测应力特征与断层稳定性分析. 岩土力学, 34(S1): 204—213.

    Huang L. Y., Yang S. X., Cui X. F., et al., 2013. Analysis of characteristics of measured stress and stability of faults in North China. Rock and Soil Mechanics, 34(S1): 204—213. (in Chinese)
    [7] 李兵, 丁立丰, 王建新等, 2019. 山东蓬莱近海岸的地应力状态及断层稳定性评价. 地质力学学报, 25(4): 459—466. doi: 10.12090/j.issn.1006-6616.2019.25.04.043

    Li B., Ding L. F., Wang J. X., et al., 2019. The state of the in-situ stress and fault stability evaluation of the Penglai coast. Journal of Geomechanics, 25(4): 459—466. (in Chinese) doi: 10.12090/j.issn.1006-6616.2019.25.04.043
    [8] 刘卓岩, 王成虎, 徐鑫等, 2017. 基于地应力实测数据分析郯庐断裂带中段滑动趋势. 现代地质, 31(4): 869—876. doi: 10.3969/j.issn.1000-8527.2017.04.021

    Liu Z. Y., Wang C. H., Xu X., et al., 2017. Slip tendency analysis of the Mid-segment of Tan-Lu fault belt based on stress measurements. Geoscience, 31(4): 869—876. (in Chinese) doi: 10.3969/j.issn.1000-8527.2017.04.021
    [9] 任海东, 王涛, 2017. 东昆仑—西秦岭造山带对接处三叠纪花岗质岩石时空演化、物源特征对比及其大地构造意义. 地球学报, 38(S1): 59—63. doi: 10.3975/cagsb.2017.s1.16

    Ren H. D., Wang T., 2017. Temporal-spatial variations, sources and tectonic significances of the Triassic granitic rocks in the junction part of the east Kunlun and West Qinling orogen, Central China. Acta Geoscientia Sinica, 38(S1): 59—63. (in Chinese) doi: 10.3975/cagsb.2017.s1.16
    [10] 王成虎, 丁立丰, 李方全等, 2012. 川西北跨度23 a的原地应力实测数据特征及其地壳动力学意义分析. 岩石力学与工程学报, 31(11): 2171—2181. doi: 10.3969/j.issn.1000-6915.2012.11.004

    Wang C. H., Ding L. F., Li F. Q., et al., 2012. Characteristics of in-situ stress measurement in northwest Sichuan basin with timespan of 23 years and its crustal dynamics significance. Chinese Journal of Rock Mechanics and Engineering, 31(11): 2171—2181. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.11.004
    [11] 王成虎, 宋成科, 郭启良等, 2014. 利用原地应力实测资料分析芦山地震震前浅部地壳应力积累. 地球物理学报, 57(1): 102—114. doi: 10.6038/cjg20140110

    Wang C. H., Song C. K., Guo Q. L., et al., 2014. Stress build-up in the shallow crust before the Lushan Earthquake based on the in-situ stress measurements. Chinese Journal of Geophysics, 57(1): 102—114. (in Chinese) doi: 10.6038/cjg20140110
    [12] 谢富仁, 陈群策, 崔效锋等, 2007. 中国大陆地壳应力环境基础数据库. 地球物理学进展, 22(1): 131—136. doi: 10.3969/j.issn.1004-2903.2007.01.018

    Xie F. R., Chen Q. C., Cui X. F., et al., 2007. Fundamental database of crustal stress environment in continental China. Progress in Geophysics, 22(1): 131—136. (in Chinese) doi: 10.3969/j.issn.1004-2903.2007.01.018
    [13] 徐纪人, 赵志新, 2006. 青藏高原及其周围地区区域应力场与构造运动特征. 中国地质, 33(2): 275—285. doi: 10.3969/j.issn.1000-3657.2006.02.005

    Xu J. R., Zhao Z. X., 2006. Characteristics of the regional stress field and tectonic movement on the Qinghai-Tibet Plateau and in its surrounding areas. Geology in China, 33(2): 275—285. (in Chinese) doi: 10.3969/j.issn.1000-3657.2006.02.005
    [14] 许忠淮, 汪素云, 黄雨蕊等, 1987. 由多个小震推断的青甘和川滇地区地壳应力场的方向特征. 地球物理学报, 30(5): 476—486.

    Xu Z. H., Wang S. Y., Huang Y. R., et al., 1978. Directions of mean stress axes in southwestern China deduced from microearthquake data. Chinese Journal of Geophysics, 30(5): 476—486. (in Chinese)
    [15] 张盛生, 张磊, 田成成等, 2019. 青海共和盆地干热岩赋存地质特征及开发潜力. 地质力学学报, 25(4): 501—508. doi: 10.12090/j.issn.1006-6616.2019.25.04.048

    Zhang S. S., Zhang L., Tian C. C., et al., 2019. Occurrence geological characteristics and development potential of hot dry rocks in Qinghai Gonghe basin. Journal of Geomechanics, 25(4): 501—508. (in Chinese) doi: 10.12090/j.issn.1006-6616.2019.25.04.048
    [16] Anderson E. M., 1905. The dynamics of faulting. Transactions of the Edinburgh Geological Society, 8(3): 387—402.
    [17] Bieniawski Z. T., 1984. Rock mechanics design in mining and tunneling. Rotterdam: A. A. Balkemn.
    [18] Brown E. T., Hoek E., 1978. Trends in relationships between measured in-situ stresses and depth. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 15(4): 211—215.
    [19] Byerlee J., 1978. Friction of rocks. Pure and Applied Geophysics, 116(4): 615—626.
    [20] Herget G., 1987. Stress assumptions for underground excavations in the Canadian shield. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 24(1): 95—97.
    [21] Jamison D. B., Cook N. G. W., 1980. Note on measured values for the state of stress in the Earth's crust. Journal of Geophysical Research: Solid Earth, 85(B4): 1833—1838. doi: 10.1029/JB085iB04p01833
    [22] Lee J. B., Chang C. D., 2009. Slip tendency of Quaternary faults in southeast Korea under current state of stress. Geosciences Journal, 13(4): 353—361. doi: 10.1007/s12303-009-0033-1
    [23] Paterson M. S., Wong T. F., 1978. Experimental rock deformation: the brittle field. New York: Springer.
    [24] Rummel F., 1986. Stresses and tectonics of the upper continental crust-a review. In: Proceedings of the ISRM International Symposium. Stockholm, Sweden: ISRM, 86—177.
    [25] Savage W. Z., Swolfs H. S., Amadei B., 1992. On the state of stress in the near-surface of the earth's crust. Pure and Applied Geophysics, 138(2): 207—228. doi: 10.1007/BF00878896
    [26] Sheorey P. R., 1994. A theory for In Situ stresses in isotropic and transverseley isotropic rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 31(1): 23—34.
    [27] Townend J., Zoback M. D., 2000. How faulting keeps the crust strong. Geology, 28(5): 399—402. doi: 10.1130/0091-7613(2000)28<399:HFKTCS>2.0.CO;2
    [28] van Heerden W. L., 1976. Practical application of the CSIR triaxial strain cell for rock stress measurements. In: Symposium I. S. R. M., ed., Investigation of Stress in Rock: Advances in Stress Measurement. Barton, ACT: Institution of Engineers, Australia.
    [29] Vavryčuk V., 2014. Iterative joint inversion for stress and fault orientations from focal mechanisms. Geophysical Journal International, 199(1): 69—77. doi: 10.1093/gji/ggu224
    [30] Zoback M. D., Townend J., Grollimund B., 2002. Steady-state failure equilibrium and deformation of intraplate lithosphere. International Geology Review, 44(5): 383—401. doi: 10.2747/0020-6814.44.5.383
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  19
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-20
  • 网络出版日期:  2021-07-12
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回