The State of the In-situ Stress and Fault Slide Evaluation of Gonghe Basin, Qinghai Provice
-
摘要: 青海共和盆地地质构造条件复杂,断层十分发育,区域内既有地热、太阳能、矿产等资源丰富,存在龙羊峡水库诱发地震环境背景。因此,分析青海共和盆地地应力特征与地质结构易滑性对于青海东部地区防震减灾具有重要意义。对盆地及附近区域内19个钻孔、65条水压致裂数据和44条应力解除实测数据进行统计分析,并基于断层摩擦强度理论、Byerlee-Anderson理论等断层力学相关理论讨论了研究区域断层易滑性与地震危险性。研究结果表明:研究区域内应力状态在深度350 m左右由逆冲型转换为走滑型,与区域内分布北北西右旋高角度逆断层相吻合;区域内最大水平主应力优势方位为N45°~E60°;地应力场初步结果反演表明研究区域应力场以逆冲型为主,局部地区兼走滑特征,与震源机制解反演结果一致;区域内断层平均摩擦系数为0.41,断层处于稳定状态,即断层易滑性较低,侧压力系数与应力积累指标插值分析结果同样表明断层整体易滑性较低,局部浅部断层带应力积累水平较高,综合分析推测断层易沿NW-SE向滑动。Abstract: The Gonghe Basin has complex geological structural conditions, well-developed faults, abundant geothermal, solar, and mineral resources in the area, as well as the Longyangxia Reservoir-induced earthquake environment background. Therefore, analyzing the characteristics of the in-situ stress and the slidability of the geological structure in the region is very important for earthquake prevention and disaster reduction in the eastern part of Qinghai. Based on the analysis of 65 hydraulic fracturing data and 44 stress relief measured data from 19 boreholes in the basin and nearby areas, and based on the theory of fault friction strength, Byerlee-Anderson theory and other related fault mechanics theories, the fault slidability and seismic risk of the study area are discussed. The results show that the stress state in the study area changes from thrust to strike-slip stress state at a depth of about 350 m, which is consistent with the north-north-west right-lateral high-angle reverse faults in the area; The dominant position of the maximum horizontal principal stress in the area is N45°~E60°; The preliminary inversion of the in-situ stress field also shows that the stress field in the study area is dominated by thrusting, and the local area is also characterized by strike-slip, which is consistent with the inversion result of the focal mechanism solution; The average friction coefficient of the fault in the area is 0.41, and the fault is in a stable state, that is, the fault is relatively slippery; At the same time, the results of interpolation analysis of the lateral pressure coefficient and the stress accumulation index found that the overall slidability of faults in the Gonghe Basin is low, and the level of stress accumulation in local shallow fault zones is high. Comprehensive analysis predicts that it is easy to slide along the NW-SE direction.
-
Key words:
- Gonghe basin /
- in-situ stress /
- focal mechanism solution /
- stress state /
- slip tendency
-
表 1 研究区域实测地应力数据
Table 1. Measured in-situ stress data in the study area
编号 测段号 测量
深度/m应力值/MPa 印痕方向 最大水平应力
系数KH,max最小水平应力
系数Kh,min侧应力
系数Kav应力积累
指标$ \mu _{\rm{m}}$最大水平
正应力σH最小水平
正应力σh垂直
应力σvGH_ZK1 1 49.46 7.70 5.99 4.49 NE37° 1.71 1.33 1.52 0.26 2 54.57 8.84 8.04 — NE10° 5.97 5.43 5.70 0.71 3 59.57 7.92 6.09 4.59 NW10° 1.73 1.33 1.53 0.27 4 69.81 5.81 4.00 3.00 — 1.94 1.33 1.64 0.32 5 78.57 7.02 4.70 3.90 — 1.80 1.21 1.51 0.29 6 81.33 8.97 5.30 4.50 NW54° 1.99 1.18 1.59 0.33 7 93.11 14.87 8.90 7.00 NW2° 2.12 1.27 1.70 0.36 8 96.05 14.34 8.50 5.50 NW1° 2.61 1.55 2.08 0.45 9 87.35 13.15 7.94 2.26 — 5.82 3.51 4.67 0.71 10 94.45 9.99 7.20 2.44 NW64° 4.09 2.95 3.52 0.61 11 84.95 12.75 7.30 — — 5.54 3.17 4.36 0.69 12 92.58 7.58 5.40 4.90 — 1.55 1.10 1.33 0.21 13 98.59 3.72 3.50 2.60 — 1.43 1.35 1.39 0.18 GH_ZK2 1 45.00 4.90 4.10 1.23 — 3.98 3.33 3.66 0.60 2 59.00 5.50 3.90 1.61 NE61° 3.41 2.42 2.92 0.55 3 85.00 6.50 5.20 2.32 NE21° 2.80 2.24 2.52 0.47 4 113.00 15.30 9.00 3.09 NE41° 4.95 2.91 3.93 0.66 5 183.00 32.90 16.80 5.00 NE53° 6.58 3.36 4.97 0.74 GH_ZK3 1 45.00 11.90 7.70 1.23 NE17° 9.67 6.26 7.97 0.81 2 165.00 22.30 11.70 4.51 NW6° 4.94 2.59 3.77 0.66 GH_ZK4 1 84.00 4.40 3.30 2.30 NE25° 1.92 1.44 1.68 0.31 2 162.00 6.20 4.10 4.43 NE30° 1.40 0.93 1.17 0.17 3 164.00 6.20 4.20 4.48 NE33° 1.38 0.94 1.16 0.16 GH_ZK5 1 147.00 7.50 5.00 4.02 NE36° 1.87 1.24 1.56 0.30 2 266.00 9.70 7.20 7.27 NE40° 1.33 0.99 1.16 0.14 3 284.00 8.40 6.30 7.76 NE42° 1.08 0.81 0.95 0.04 GH_ZK6 1 238.00 17.80 10.40 6.51 NE37° 2.74 1.60 2.17 0.46 2 335.00 17.20 10.40 9.16 NE32° 1.88 1.14 1.51 0.31 3 367.00 22.00 13.20 10.03 NE43° 2.19 1.32 1.76 0.37 GH_ZK7 1 41.00 5.50 3.90 1.12 NE61° 4.91 3.48 4.20 0.66 2 67.00 6.50 5.20 1.83 NE21° 3.55 2.84 3.20 0.56 3 94.00 15.30 9.00 2.57 NE41° 5.95 3.50 4.73 0.71 4 165.00 32.90 16.80 4.51 NE53° 7.29 3.72 5.51 0.76 GH_ZK8 1 45.00 11.10 7.70 1.23 NE17° 9.02 6.26 7.64 0.80 2 165.00 22.30 11.70 4.51 NW6° 4.94 2.59 3.77 0.66 GH_ZK9 1 212.00 10.10 8.10 5.80 NE54° 1.74 1.40 1.57 0.26 2 220.00 10.50 8.70 6.01 NE70° 1.75 1.45 1.60 0.27 3 235.00 11.10 8.80 6.42 NE48° 1.73 1.37 1.55 0.27 GH_ZK10 1 138.00 6.90 4.50 3.77 NW75° 1.83 1.19 1.51 0.29 2 140.00 7.50 5.70 3.83 NW86° 1.96 1.49 1.73 0.32 3 144.00 8.50 5.60 3.94 NE68° 2.16 1.42 1.79 0.37 GH_ZK11 1 186.00 7.30 6.30 5.09 NW64° 1.44 1.24 1.34 0.18 2 190.00 7.80 6.40 5.19 NW81° 1.50 1.23 1.37 0.20 3 198.00 9.00 5.40 5.41 NW70° 1.66 1.00 1.33 0.25 GH_ZK12 1 244.00 8.80 7.40 6.67 NW72° 1.32 1.11 1.22 0.14 2 252.00 9.60 7.40 6.89 NW76° 1.39 1.07 1.23 0.16 3 254.00 7.10 5.20 6.94 NE80° 1.02 0.75 0.89 0.01 GH_ZK13 1 147.00 7.50 4.50 4.02 NW0° 1.87 1.12 1.50 0.30 2 163.00 9.70 6.40 4.46 NW85° 2.18 1.44 1.81 0.37 3 179.00 11.60 6.60 4.89 NW80° 2.37 1.35 1.86 0.41 GH_ZK14 1 148.00 8.10 6.10 4.05 NW65° 2.00 1.51 1.76 0.33 2 150.00 11.00 7.10 4.10 NW82° 2.68 1.73 2.21 0.46 3 158.00 10.40 7.20 4.32 NW69° 2.41 1.67 2.04 0.41 GH_ZK15 1 306.00 12.60 7.30 8.37 NW70° 1.51 0.87 1.19 0.20 2 312.00 13.20 7.90 8.53 NW83° 1.55 0.93 1.24 0.21 3 322.00 12.60 8.20 8.80 NE83° 1.43 0.93 1.18 0.18 GH_ZK16 1 290.00 9.10 5.50 7.93 NW64° 1.15 0.69 0.92 0.07 2 294.00 8.40 5.60 8.04 NW82° 1.05 0.70 0.88 0.02 3 300.00 10.60 6.60 8.20 NW73° 1.29 0.80 1.05 0.13 GH_ZK17 1 250.00 11.00 6.50 6.84 NW74° 1.61 0.95 1.28 0.23 2 252.00 11.80 6.80 6.89 NW85° 1.71 0.99 1.35 0.26 3 258.00 12.00 6.90 7.05 NE80° 1.70 0.98 1.34 0.26 GH_ZK18 1 480.00 23.60 13.00 13.12 NE44° 1.80 0.99 1.40 0.29 2 492.00 24.80 13.40 13.45 NE42° 1.84 1.00 1.42 0.30 GH_ZK19 1 264.00 11.90 6.60 7.22 NE15° 1.65 0.91 1.28 0.24 2 267.00 13.10 7.10 7.30 — 1.79 0.97 1.38 0.28 表 2 300 m深度处测点K、μ值
Table 2. K value and friction coefficient at a depth of 300 m
测点 KH,max Kh,min 有效正应力σ/MPa 剪应力
τ/MPaμ GH_ZK 1 2.80 1.22 6.21 3.38 0.54 GH_ZK 2 4.05 1.94 10.67 5.32 0.50 GH_ZK 3 1.72 0.67 4.02 1.84 0.46 GH_ZK 4 1.82 0.86 4.31 1.80 0.42 GH_ZK 5 1.41 0.98 4.18 0.89 0.21 GH_ZK 6 2.41 1.31 6.41 2.54 0.40 GH_ZK 7 4.00 1.98 10.81 5.23 0.48 GH_ZK 8 1.90 0.67 4.14 2.16 0.52 GH_ZK 9 2.01 1.29 6.03 1.81 0.30 GH_ZK 10 2.13 1.08 5.11 2.21 0.43 GH_ZK 11 1.83 1.05 4.72 1.65 0.35 GH_ZK 12 1.67 1.00 4.39 1.39 0.32 GH_ZK 13 2.27 1.10 5.28 2.47 0.47 GH_ZK 14 2.43 1.32 6.50 2.56 0.39 GH_ZK 15 1.88 1.01 4.57 1.81 0.40 GH_ZK 16 1.64 0.86 4.20 1.43 0.34 GH_ZK 17 1.98 1.00 4.60 2.02 0.44 GH_ZK 18 2.22 1.15 5.48 2.30 0.42 GH_ZK 19 2.13 1.02 4.77 2.29 0.48 -
[1] 安其美, 丁立丰, 王海忠等, 2004. 龙门山断裂带的性质与活动性研究. 大地测量与地球动力学, 24(2): 115—119.An Q. M., Ding L. F., Wang H. Z., et al., 2004. Research of property and activity of Longmen mountain fault zone. Journal of Geodesy and Geodynamics, 24(2): 115—119. (in Chinese) [2] 陈群策, 安其美, 孙东生等, 2010. 山西盆地现今地应力状态与地震危险性分析. 地球学报, 31(4): 541—548.Chen Q. C., An Q. M., Sun D. S., et al., 2010. Current in-situ stress state of Shanxi basin and analysis of earthquake risk. Acta Geoscientia Sinica, 31(4): 541—548. (in Chinese) [3] 丁仨平, 2008. 西秦岭—祁连造山带(东段)交接部位早古生代构造格架及构造演化. 西安: 长安大学.Ding S. P., 2008. Early Palaeozoic tectonic framework and evolution in the junction of Western Qinling orogenic belt and Qilian Orogenic belt. Xi’an: Chang’an University. (in Chinese) [4] 董治平, 姚政生, 雷芳, 1992. 青海东部活断层与现代构造应力场. 地壳形变与地震, 12(4): 64—71.Dong Z. P., Yao Z. S., Lei F., 1992. Active faults and modern tectonic stress field in the region of eastern Qinghai. Crustal Deformation and Earthquake, 12(4): 64—71. (in Chinese) [5] 都昌庭, 2001. 共和地震震源机制解特征. 高原地震, 13(4): 1—5.Du C. T., 2001. Characteristics of the mechanism solutions of Gonghe earthquakes. Plateau Earthquake Research, 13(4): 1—5. (in Chinese) [6] 黄禄渊, 杨树新, 崔效锋等, 2013. 华北地区实测应力特征与断层稳定性分析. 岩土力学, 34(S1): 204—213.Huang L. Y., Yang S. X., Cui X. F., et al., 2013. Analysis of characteristics of measured stress and stability of faults in North China. Rock and Soil Mechanics, 34(S1): 204—213. (in Chinese) [7] 李兵, 丁立丰, 王建新等, 2019. 山东蓬莱近海岸的地应力状态及断层稳定性评价. 地质力学学报, 25(4): 459—466. doi: 10.12090/j.issn.1006-6616.2019.25.04.043Li B., Ding L. F., Wang J. X., et al., 2019. The state of the in-situ stress and fault stability evaluation of the Penglai coast. Journal of Geomechanics, 25(4): 459—466. (in Chinese) doi: 10.12090/j.issn.1006-6616.2019.25.04.043 [8] 刘卓岩, 王成虎, 徐鑫等, 2017. 基于地应力实测数据分析郯庐断裂带中段滑动趋势. 现代地质, 31(4): 869—876. doi: 10.3969/j.issn.1000-8527.2017.04.021Liu Z. Y., Wang C. H., Xu X., et al., 2017. Slip tendency analysis of the Mid-segment of Tan-Lu fault belt based on stress measurements. Geoscience, 31(4): 869—876. (in Chinese) doi: 10.3969/j.issn.1000-8527.2017.04.021 [9] 任海东, 王涛, 2017. 东昆仑—西秦岭造山带对接处三叠纪花岗质岩石时空演化、物源特征对比及其大地构造意义. 地球学报, 38(S1): 59—63. doi: 10.3975/cagsb.2017.s1.16Ren H. D., Wang T., 2017. Temporal-spatial variations, sources and tectonic significances of the Triassic granitic rocks in the junction part of the east Kunlun and West Qinling orogen, Central China. Acta Geoscientia Sinica, 38(S1): 59—63. (in Chinese) doi: 10.3975/cagsb.2017.s1.16 [10] 王成虎, 丁立丰, 李方全等, 2012. 川西北跨度23 a的原地应力实测数据特征及其地壳动力学意义分析. 岩石力学与工程学报, 31(11): 2171—2181. doi: 10.3969/j.issn.1000-6915.2012.11.004Wang C. H., Ding L. F., Li F. Q., et al., 2012. Characteristics of in-situ stress measurement in northwest Sichuan basin with timespan of 23 years and its crustal dynamics significance. Chinese Journal of Rock Mechanics and Engineering, 31(11): 2171—2181. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.11.004 [11] 王成虎, 宋成科, 郭启良等, 2014. 利用原地应力实测资料分析芦山地震震前浅部地壳应力积累. 地球物理学报, 57(1): 102—114. doi: 10.6038/cjg20140110Wang C. H., Song C. K., Guo Q. L., et al., 2014. Stress build-up in the shallow crust before the Lushan Earthquake based on the in-situ stress measurements. Chinese Journal of Geophysics, 57(1): 102—114. (in Chinese) doi: 10.6038/cjg20140110 [12] 谢富仁, 陈群策, 崔效锋等, 2007. 中国大陆地壳应力环境基础数据库. 地球物理学进展, 22(1): 131—136. doi: 10.3969/j.issn.1004-2903.2007.01.018Xie F. R., Chen Q. C., Cui X. F., et al., 2007. Fundamental database of crustal stress environment in continental China. Progress in Geophysics, 22(1): 131—136. (in Chinese) doi: 10.3969/j.issn.1004-2903.2007.01.018 [13] 徐纪人, 赵志新, 2006. 青藏高原及其周围地区区域应力场与构造运动特征. 中国地质, 33(2): 275—285. doi: 10.3969/j.issn.1000-3657.2006.02.005Xu J. R., Zhao Z. X., 2006. Characteristics of the regional stress field and tectonic movement on the Qinghai-Tibet Plateau and in its surrounding areas. Geology in China, 33(2): 275—285. (in Chinese) doi: 10.3969/j.issn.1000-3657.2006.02.005 [14] 许忠淮, 汪素云, 黄雨蕊等, 1987. 由多个小震推断的青甘和川滇地区地壳应力场的方向特征. 地球物理学报, 30(5): 476—486.Xu Z. H., Wang S. Y., Huang Y. R., et al., 1978. Directions of mean stress axes in southwestern China deduced from microearthquake data. Chinese Journal of Geophysics, 30(5): 476—486. (in Chinese) [15] 张盛生, 张磊, 田成成等, 2019. 青海共和盆地干热岩赋存地质特征及开发潜力. 地质力学学报, 25(4): 501—508. doi: 10.12090/j.issn.1006-6616.2019.25.04.048Zhang S. S., Zhang L., Tian C. C., et al., 2019. Occurrence geological characteristics and development potential of hot dry rocks in Qinghai Gonghe basin. Journal of Geomechanics, 25(4): 501—508. (in Chinese) doi: 10.12090/j.issn.1006-6616.2019.25.04.048 [16] Anderson E. M., 1905. The dynamics of faulting. Transactions of the Edinburgh Geological Society, 8(3): 387—402. [17] Bieniawski Z. T., 1984. Rock mechanics design in mining and tunneling. Rotterdam: A. A. Balkemn. [18] Brown E. T., Hoek E., 1978. Trends in relationships between measured in-situ stresses and depth. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 15(4): 211—215. [19] Byerlee J., 1978. Friction of rocks. Pure and Applied Geophysics, 116(4): 615—626. [20] Herget G., 1987. Stress assumptions for underground excavations in the Canadian shield. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 24(1): 95—97. [21] Jamison D. B., Cook N. G. W., 1980. Note on measured values for the state of stress in the Earth's crust. Journal of Geophysical Research: Solid Earth, 85(B4): 1833—1838. doi: 10.1029/JB085iB04p01833 [22] Lee J. B., Chang C. D., 2009. Slip tendency of Quaternary faults in southeast Korea under current state of stress. Geosciences Journal, 13(4): 353—361. doi: 10.1007/s12303-009-0033-1 [23] Paterson M. S., Wong T. F., 1978. Experimental rock deformation: the brittle field. New York: Springer. [24] Rummel F., 1986. Stresses and tectonics of the upper continental crust-a review. In: Proceedings of the ISRM International Symposium. Stockholm, Sweden: ISRM, 86—177. [25] Savage W. Z., Swolfs H. S., Amadei B., 1992. On the state of stress in the near-surface of the earth's crust. Pure and Applied Geophysics, 138(2): 207—228. doi: 10.1007/BF00878896 [26] Sheorey P. R., 1994. A theory for In Situ stresses in isotropic and transverseley isotropic rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 31(1): 23—34. [27] Townend J., Zoback M. D., 2000. How faulting keeps the crust strong. Geology, 28(5): 399—402. doi: 10.1130/0091-7613(2000)28<399:HFKTCS>2.0.CO;2 [28] van Heerden W. L., 1976. Practical application of the CSIR triaxial strain cell for rock stress measurements. In: Symposium I. S. R. M., ed., Investigation of Stress in Rock: Advances in Stress Measurement. Barton, ACT: Institution of Engineers, Australia. [29] Vavryčuk V., 2014. Iterative joint inversion for stress and fault orientations from focal mechanisms. Geophysical Journal International, 199(1): 69—77. doi: 10.1093/gji/ggu224 [30] Zoback M. D., Townend J., Grollimund B., 2002. Steady-state failure equilibrium and deformation of intraplate lithosphere. International Geology Review, 44(5): 383—401. doi: 10.2747/0020-6814.44.5.383