• ISSN 1673-5722
  • CN 11-5429/P

渤海海域软土层土对地震动参数的影响研究

周星源 彭艳菊 方怡 赵庆凯 柳扬斌 黄帅 吕悦军

周星源,彭艳菊,方怡,赵庆凯,柳扬斌,黄帅,吕悦军,2021. 渤海海域软土层土对地震动参数的影响研究. 震灾防御技术,16(1):91−104. doi: 10.11899/zzfy20210110
引用本文: 周星源,彭艳菊,方怡,赵庆凯,柳扬斌,黄帅,吕悦军,2021. 渤海海域软土层土对地震动参数的影响研究. 震灾防御技术,16(1):91−104. doi: 10.11899/zzfy20210110
doi:10.11899/zzfy20210110. doi: 10.11899/zzfy20210110
Citation: doi:10.11899/zzfy20210110. doi: 10.11899/zzfy20210110

渤海海域软土层土对地震动参数的影响研究

doi: 10.11899/zzfy20210110
基金项目: 国家重点研发计划(2017YFC1500403)
详细信息
    作者简介:

    周星源,男,生于1996年。硕士研究生。主要从事海域场地地震效应方面的研究工作。E-mail:zhouxingyuan19@mails.ucas.ac.cn

    通讯作者:

    彭艳菊,女,生于1976年。正研级高级工程师。主要从事地震场地效应研究。E-mail:yanjupeng@ninhm.ac.cn

Investigation on the Effect of Surface Soft Soil on Seismic Ground Motion Parameter in Bohai Sea, China

  • 摘要: 渤海海域软土层土对场地设计地震动参数取值具有显著影响。选取渤海中部钻孔剖面作为计算场地模型基础,分别构建软土和硬土场地模型,并通过改变软土层厚度,构造新的场地模型。采用等效线性化方法(EL法)和非线性计算方法(NL法)分别对场地模型进行地震反应分析,分析了海底软土层土对地震动参数的影响。研究结果表明:海底软土层土对地震动峰值加速度的影响显著,随着地震动输入增加,软土层放大效应减弱,减震作用逐渐增强;EL法中,软土层土对基岩反应谱的高频部分具有明显滤波作用,而NL法中,滤波作用较弱,海底面反应谱随地震动输入的增大先放大后减小;软土层土会降低设计地震动地震最大影响系数,增大特征周期。对于海域工程,特别是深基础工程抗震设计地震动参数的确定,从保守角度考虑,建立场地模型时建议删除软土层。
  • 图  1  场地土层分布

    Figure  1.  Models of Typical Sites

    图  2  渤海常见土类动力学参数

    Figure  2.  Dynamic Parameters of Common Soils in Bohai Sea

    图  3  目标谱、拟合谱对比图和基岩水平加速度时程曲线

    Figure  3.  Time histories and response spectrum of the input ground motions on bedrock

    图  4  不同计算方法对软土场地和硬土场地峰值加速度的影响

    Figure  4.  Peak ground acceleration of soft soil sites and hard soil sites from different simulation methods

    图  5  EL、NL法得到的场地1峰值加速度变化规律

    Figure  5.  Peak ground acceleration of site NO 1 obtained by equivalent linear wave propagation analysis and nonlinear analysis

    图  6  反应谱比值随基岩输入地震动的变化

    Figure  6.  Site response spectrum with different input ground motions on bedrock

    图  7  软土层厚度对地表峰值加速度的影响

    Figure  7.  Effects of soft surface thickness on peak ground acceleration

    图  8  场地1反应谱比值分布

    Figure  8.  Response spectrum ratio of new models of site No.1

    图  9  地震影响系数最大值与特征周期随软土层厚度的变化

    Figure  9.  Site coefficient and characteristic period with different soft soil thickness

  • [1] 蔡锋, 曹超, 周兴华等, 2013. 中国近海海洋: 海底地形地貌. 北京: 海洋出版社.
    [2] 陈国兴, 战吉艳, 刘建达等, 2013. 远场大地震作用下深软场地设计地震动参数研究. 岩土工程学报, 35(9): 1591—1599.

    Chen G. X., Zhan J. Y., Liu J. D., et al., 2013. Parameter study on ground motion design of deep soft site under far-field large earthquake. Chinese Journal of Geotechnical Engineering, 35(9): 1591—1599. (in Chinese)
    [3] 高孟潭, 2015. GB 18306—2015《中国地震动参数区划图》宣贯教材. 北京: 中国标准出版社.
    [4] 龚思礼, 2002. 建筑抗震设计手册. 2版. 北京: 中国建筑工业出版社.

    Gong S. L., 2002. Structural seismic design manual. 2nd ed. Beijing: China Architecture & Building Press. (in Chinese)
    [5] 胡进军, 刁红旗, 谢礼立, 2013. 海底强地震动观测及其特征的研究进展. 地震工程与工程振动, 33(6): 1—8.

    Hu J. J., Diao H. Q., Xie L. L., 2013. Review of observation and characteristics of seafloor strong motion. Earthquake Engineering and Engineering Vibration, 33(6): 1—8. (in Chinese)
    [6] 蒋其峰, 彭艳菊, 吕悦军, 2014. 渤海海域软表层厚度对反应谱的影响. 地震工程与工程振动, 34(S1): 238—246.

    Jiang Q. F., Peng Y. J., Lv Y. J., 2014. The influence of soft surface soil’s thickness on response spectra in Bohai sea. Earthquake Engineering and Engineering Vibration, 34(S1): 238—246. (in Chinese)
    [7] 李小军, 彭青, 刘文忠, 2001. 设计地震动参数确定中的场地影响考虑. 世界地震工程, 17(4): 34—41. doi: 10.3969/j.issn.1007-6069.2001.04.006

    Li X. J., Peng Q., Liu W. Z., 2001. Consideration of Site effects for determination of design earthquake ground motion parameters. World Information on Earthquake Engineering, 17(4): 34—41. (in Chinese) doi: 10.3969/j.issn.1007-6069.2001.04.006
    [8] 李小军, 2006. 海域工程场地地震安全性评价的特殊问题. 震灾防御技术, 1(2): 97—104. doi: 10.3969/j.issn.1673-5722.2006.02.002

    Li X. J., 2006. Special problems on evaluation of seismic safety for offshore engineering site. Technology For Earthquake Disaster Prevention, 1(2): 97—104. (in Chinese) doi: 10.3969/j.issn.1673-5722.2006.02.002
    [9] 李小军, 陈苏, 任治坤等, 2020. 海域地震区划关键技术研究项目及研究进展. 地震科学进展, 50(1): 2—19. doi: 10.3969/j.issn.2096-7780.2020.01.001

    Li X. J., Chen S., Ren Z. K., et al., 2020. Project plan and research progress on key technologies of seismic zoning in sea areas. Progress in Earthquake Sciences, 50(1): 2—19. (in Chinese) doi: 10.3969/j.issn.2096-7780.2020.01.001
    [10] 廖振鹏, 李小军, 1989. 地表土层地震反应的等效线性化解法. 见: 廖振鹏主编, 地震小区划: 理论与实践. 北京: 地震出版社, 141—151.
    [11] 刘晓瑜, 董立峰, 陈义兰等, 2013. 渤海海底地貌特征和控制因素浅析. 海洋科学进展, 31(1): 105—115. doi: 10.3969/j.issn.1671-6647.2013.01.012

    Liu X. Y., Dong L. F., Chen Y. L., et al., 2013. Analysis on geomorphological features and their controlling factors in the Bohai sea. Advances in Marine Science, 31(1): 105—115. (in Chinese) doi: 10.3969/j.issn.1671-6647.2013.01.012
    [12] 吕悦军, 彭艳菊, 施春花等, 2008. 渤海海底表层软弱土特征及其对地震动的影响. 防灾减灾工程学报, 28(3): 368—374.

    Lü Y. J., Peng Y. J., Shi C. H., et al., 2008. Study on site classification and seismic parameters for the soft of Bohai seabed surface layer. Journal of Disaster Prevention and Mitigation Engineering, 28(3): 368—374. (in Chinese)
    [13] 牛作民, 1986. 渤海湾海相淤泥土工程物理性质的初步研究. 海洋地质与第四纪地质, 6(3): 35—42.

    Niu Z. M., 1986. Geotechnical characteristics and origin of absorbability of marine puddly soil in Bohai gulf. Marine Geology & Quaternary Geology, 6(3): 35—42. (in Chinese)
    [14] 荣棉水, 李红光, 李小军等, 2013. Davidenkov模型对海域软土的适用性研究. 岩土工程学报, 35(S2): 596—600.

    Rong M. S., Li H. G., Li X. J., et al., 2013. Applicability of Davidenkov model for soft soils in sea areas. Chinese Journal of Geotechnical Engineering, 35(S2): 596—600. (in Chinese)
    [15] 王中波, 李日辉, 张志珣等, 2016. 渤海及邻近海区表层沉积物粒度组成及沉积分区. 海洋地质与第四纪地质, 36(6): 101—109.

    Wang Z. B., Li R. H., Zhang Z. X., et al., 2016. Grain size composition and distribution pattrn of seafloor sediments in Bohai bay and adjacent areas. Marine Geology & Quaternary Geology, 36(6): 101—109. (in Chinese)
    [16] 王中波, 陆凯, 温珍河等, 2020. 中国东部海域表层沉积物粒度组成及影响因素. 地球科学, 45(7): 2709—2721.

    Wang Z. B., Lu K., Wen Z. H., et al., 2020. Grain size compositions and their influencing factors of the surface sediments in Eastern China seas. Earth Science, 45(7): 2709—2721. (in Chinese)
    [17] 徐杰, 计凤桔, 2015. 中国东部地区新生代地质构造. 北京: 地震出版社.
    [18] 徐杰, 计凤桔, 2016. 渤海湾盆地构造及其演化. 北京: 地震出版社.
    [19] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2006. GB 17741—2005 工程场地地震安全性评价. 北京: 中国标准出版社.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration, 2006. GB 17741—2005 Evaluation of seismic safety for engineering sites. Beijing: Standards Press of China. (in Chinese)
    [20] 中华人民共和国住房和城乡建设部, 2010. 建筑抗震设计规范. 北京: 中国建筑工业出版社.
    [21] 周越, 2020. 海域地震动特性及场地影响分析. 北京: 中国地震局地球物理研究所.

    Zhou Y., 2020. Analysis of offshore ground motion characteristics and site influence. Beijing: Institute of Geophysics, China Earthquake Administration. (in Chinese)
    [22] 朱姣, 许汉刚, 陈国兴, 2018. 苏州第四纪深厚沉积层一维等效线性和非线性地震反应对比分析. 岩土力学, 39(4): 1479—1490, 1524.

    Zhu J., Xu H. G., Chen G. X., 2018. Comparison of 1D equivalent-linear and nonlinear seismic site responses for quaternary deep sediment layers in Suzhou region. Rock and Soil Mechanics, 39(4): 1479—1490, 1524. (in Chinese)
    [23] 朱镜清, 周建, 朱达力, 1999. 海底淤泥层对海洋工程地震作用环境的影响问题. 地震工程与工程振动, 19(3): 1—6. doi: 10.3969/j.issn.1000-1301.1999.03.001

    Zhu J. Q., Zhou J., Zhu D. L., 1999. Problem of effects of seafloor silt on earthquake action environment of ocean engineering. Earthquake Engineering and Engineering Vibration, 19(3): 1—6. (in Chinese) doi: 10.3969/j.issn.1000-1301.1999.03.001
    [24] Bolisetti C., Whittaker A. S., Mason H. B., et al., 2014. Equivalent linear and nonlinear site response analysis for design and risk assessment of safety-related nuclear structures. Nuclear Engineering and Design, 275: 107—121. doi: 10.1016/j.nucengdes.2014.04.033
    [25] Hashash Y. M. A., 2020. DEEPSOIL 7.0, user manual. Urbana, IL: Board of Trustees of University of Illinois at Urbana-Champaign.
    [26] Hu J. J., Tan J. Y., Zhao J. X., 2020. New GMPEs for the Sagami bay region in japan for moderate magnitude events with emphasis on differences on site amplifications at the seafloor and land seismic stations of K-NET. Bulletin of the Seismological Society of America, 110(5): 2577—2597. doi: 10.1785/0120190305
    [27] Idriss I. M., Sun J. I., 1992. User's manual for SHAKE 91: a computer program for conducting equivalent linear seismic response analysis of horizontally layered soil deposits. Davis, CA: University of California.
    [28] Kaklamanos J., Baise L. G., Thompson E. M., et al., 2015. Comparison of 1D linear, equivalent-linear, and nonlinear site response models at six KiK-net validation sites. Soil Dynamics and Earthquake Engineering, 69: 207—219. doi: 10.1016/j.soildyn.2014.10.016
    [29] Kondner R. L., Zelasko J. S., 1963. A hyperbolic stress-strain formulation for sands. In: Proceedings of the 2nd Pan-American Conference on Soil Mechanics and Foundation Engineering. Brazil, 289—324.
    [30] Wallace L. M., Araki E., Saffer D., et al., 2016. Near-field observations of an offshore Mw 6.0 earthquake from an integrated seafloor and subseafloor monitoring network at the Nankai Trough, southwest Japan. Journal of Geophysical Research: Solid Earth, 121(11): 8338—8351. doi: 10.1002/2016JB013417
    [31] Zhan J. Y., Chen G. X., Jin D. D., 2011. Seismic response characteristics of deep soft site with depth under far-field ground motion of great earthquake. Advanced Materials Research, 378—379: 477—483. doi: 10.4028/www.scientific.net/AMR.378-379.477
    [32] Zhang Q., Zheng X. Y., 2019. Offshore earthquake ground motions: distinct features and influence on the seismic design of marine structures. Marine Structures, 65: 291—307. doi: 10.1016/j.marstruc.2019.02.003
    [33] Zhou X. Y., Peng Y. J., Zhao Q. K., et al., 2021. Marine site classification based on the engineering geology condition of Bohai. Earthquake Engineering Research Institute Annual Meeting.
  • 加载中
图(10)
计量
  • 文章访问数:  176
  • HTML全文浏览量:  13
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-16
  • 网络出版日期:  2021-07-12
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回