• ISSN 1673-5722
  • CN 11-5429/P

中国海域地震区划及关键问题研究

李小军 李娜 陈苏

李小军,李娜,陈苏,2021. 中国海域地震区划及关键问题研究. 震灾防御技术,16(1):1−10. doi:10.11899/zzfy20210101. doi: 10.11899/zzfy20210101
引用本文: 李小军,李娜,陈苏,2021. 中国海域地震区划及关键问题研究. 震灾防御技术,16(1):1−10. doi:10.11899/zzfy20210101. doi: 10.11899/zzfy20210101
Li Xiaojun, Li Na, Chen Su. Study on Seismic Zoning in China Sea Area and Its Key Issues[J]. Technology for Earthquake Disaster Prevention, 2021, 16(1): 1-10. doi: 10.11899/zzfy20210101
Citation: Li Xiaojun, Li Na, Chen Su. Study on Seismic Zoning in China Sea Area and Its Key Issues[J]. Technology for Earthquake Disaster Prevention, 2021, 16(1): 1-10. doi: 10.11899/zzfy20210101

中国海域地震区划及关键问题研究

doi: 10.11899/zzfy20210101
基金项目: 国家重点研发计划(2017YFC1500400)
详细信息
    作者简介:

    李小军,男,生于1965年。研究员。主要从事地震工程研究工作。E-mail:beerli@vip.sina.com

Study on Seismic Zoning in China Sea Area and Its Key Issues

  • 摘要: 国家重点研发计划项目《海域地震区划关键技术研究》已实施3年,进入项目结题阶段,已形成海域地震区划方法与技术体系,研究成果为即将开展的中国海域地震区划图编制工作提供技术支撑。项目组分析和探讨了海域地震区划研究基础与存在的问题,结合所关注的关键科学和技术问题,介绍和分析了主要研究成果和进展,包括海域断裂活动性探测和地震构造、中国海域与邻区地震目录及地震活动特征、海域地震动特性及衰减模型、海域场地条件及对地震动的影响、海域地震区划图编制方法与技术等;编制了一系列相关图件、数据库和计算软件,包括中国东部和南部海域活动构造框架图、3个典型海域(位于黄海、台湾海峡、南海内)地震构造图、中国海域及邻区统一地震目录、中国海域潜在震源区划分图与考虑不确定性的对比方案及考虑三维潜源模型的地震危险性分析软件;建立了中国海域及邻区俯冲带地震构造模型、基于地震动观测记录和地震模拟数据的南海俯冲带板内地震动衰减关系、利用强震动加速度记录结合宽频带速度记录的俯冲带板缘与板内地震的地震动长周期反应谱衰减关系,提出了以场地覆盖土层厚度及土层等效剪切波速为指标的大陆架场地分类方法及相应的场地地震动参数调整方案;最后形成了海域地震区划图编制原则、技术要求和技术方法体系,完成了海域地震区划图编制规程(初稿)的编制工作,基本完成了3个典型海域地震区划图的编制工作。
  • [1] 陈苏, 周越, 李小军等, 2018. 近海域地震动的时频特征与工程特性. 振动与冲击, 37(16): 227—233.

    Chen S., Zhou Y., Li X. J., et al., 2018. Time-frequency and engineering characteristics on offshore ground motion. Journal of Vibration and Shock, 37(16): 227—233. (in Chinese)
    [2] 高孟潭, 2015. GB 18306—2015《中国地震动参数区划图》宣贯教材. 北京: 中国质检出版社, 中国标准出版社, 1—15.
    [3] 郭增建, 杨国军, 秦保燕等, 1987. 中国海域及其相邻海域地震烈度区划图及简要说明. 西北地震学报, 9(4): 74—79.

    Guo Z. J., Yang G. J., Qin B. Y., et al., 1987. Breif illustration on the seismic zoning of the sea area of China and its vicinity. Northwestern Seismological Journal, 9(4): 74—79. (in Chinese)
    [4] 郭增建, 秦保燕, 郭安宁等, 1999. 关于1987年中国海域地震烈度区划图的修定. 西北地震学报, 21(1): 99-102.

    Guo Z. J., Qin B. Y., Guo A. N., et al., 1999. A correction of the seismic zoning map of sea areas in China and its vicinity. Northwestern Seismological Journal, 21(1): 99-102. (in Chinese)
    [5] 胡进军, 刁红旗, 谢礼立, 2013. 海底强地震动观测及其特征的研究进展. 地震工程与工程振动, 33(6): 1—8.

    Hu J. J., Diao H. Q., Xie L. L., 2013. Review of observation and characteristics of seafloor strong motion. Journal of Earthquake Engineering and Engineering Vibration, 33(6): 1—8. (in Chinese)
    [6] 胡进军, 郑旭, 郝彦春等, 2017. 俯冲带地震动特征及其衰减规律探讨. 地球物理学报, 60(5): 1773—1787. doi: 10.6038/cjg20170514

    Hu J. J., Zheng X., Hao Y. C., et al., 2017. Characterization of strong motion of subduction earthquakes and its attenuation relationship. Chinese Journal of Geophysics, 60(5): 1773—1787. (in Chinese) doi: 10.6038/cjg20170514
    [7] 胡进军, 郑旭, 谢礼立, 2018. 基于混合方法的南海海域地震动衰减关系研究. 土木工程学报, 51(7): 36—49.

    Hu J. J., Zheng X., Xie L. L., 2018. Derivation of ground motion attenuation relation for earthquake in the South China Sea areas based on a hybrid method. China Civil Engineering Journal, 51(7): 36—49. (in Chinese)
    [8] 兰景岩, 卢滔, 吕悦军等, 2013. 海底软弱场地非线性地震反应及其应用研究. 土木工程学报, 46(S1): 172—179.

    Lan J. Y., Lu T., Lü Y. J., et al., 2013. Nonlinear seismic ground response analysis and implications for soft site in Bohai seafloor. China Civil Engineering Journal, 46(S1): 172—179. (in Chinese)
    [9] 李金成, 朱达力, 朱镜清, 2001. 二维不规则海底地形对海底地震动的影响. 自然灾害学报, 10(4): 142—147. doi: 10.3969/j.issn.1004-4574.2001.04.027

    Li J. C., Zhu D. L., Zhu J. Q., 2001. Effects of 2-D irregular seafloor topography on undersea ground motion. Journal of Natural Disasters, 10(4): 142—147. (in Chinese) doi: 10.3969/j.issn.1004-4574.2001.04.027
    [10] 李小军, 2006. 海域工程场地地震安全性评价的特殊问题. 震灾防御技术, 1(2): 97—104. doi: 10.3969/j.issn.1673-5722.2006.02.002

    Li X. J., 2006. Special problems on evaluation of seismic safety for offshore engineering site. Technology for Earthquake Disaster Prevention, 1(2): 97—104. (in Chinese) doi: 10.3969/j.issn.1673-5722.2006.02.002
    [11] 李小军, 2013. 地震动参数区划图场地条件影响调整. 岩土工程学报, 35(S2): 21—29.

    Li X. J., 2013. Adjustment of seismic ground motion parameters considering site effects in seismic zonation map. Chinese Journal of Geotechnical Engineering, 35(S2): 21—29. (in Chinese)
    [12] 李小军, 陈苏, 任治坤等, 2020. 海域地震区划关键技术研究项目及研究进展. 地震科学进展, 50(1): 2—19. doi: 10.3969/j.issn.2096-7780.2020.01.001

    Li X. J., Chen S., Ren Z. K., et al., 2020. Project plan and research progress on key technologies of seismic zoning in sea areas. Progress in Earthquake Sciences, 50(1): 2—19. (in Chinese) doi: 10.3969/j.issn.2096-7780.2020.01.001
    [13] 荣棉水, 李小军, 卢滔等, 2013. 对含厚软表层海域工程场地设计地震动参数确定的一点建议. 地震学报, 35(2): 262—271. doi: 10.3969/j.issn.0253-3782.2013.02.012

    Rong M. S., Li X. J., Lu T., et al., 2013. Suggestion on determination of design ground motion parameters for offshore engineering sites with deep soft surface layers. Acta Seismologica Sinica, 35(2): 262—271. (in Chinese) doi: 10.3969/j.issn.0253-3782.2013.02.012
    [14] 荣棉水, 喻烟, 王继鑫, 2018. 基于强震观测的海域和陆域场地效应的对比研究. 建筑结构, 48(S2): 345—349.

    Rong M. S., Yu Y., Wang J. X., 2018. Comparative study on site-effects of sea and land area based on strong earthquake observation. Building Structure, 48(S2): 345—349. (in Chinese)
    [15] 时振梁, 2002. 中国地震区划工作回顾. 见: 新世纪地震工程与防震减灾: 庆贺胡聿贤院士八十寿辰. 地震出版社, 50—56.
    [16] 郑天愉, 姚振兴, 谢礼立, 1985. 海底强地面运动计算. 地震工程与工程振动, 5(3): 13—22.

    Zheng T. Y., Yao Z. X., Xie L. L., 1985. Strong motion of ocean bottom. Earthquake Engineering and Engineering Vibration, 5(3): 13—22. (in Chinese)
    [17] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2006. GB 17741—2005 工程场地地震安全性评价. 北京: 中国标准出版社, 1—12.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China, 2006. GB 17741—2005 Evaluation of seismic safety for engineering sites. Beijing: Standards Press of China, 1—12. (in Chinese)
    [18] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2016. GB 18306—2015 中国地震动参数区划图. 北京: 中国标准出版社, 1—242.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China, 2016. GB 18306—2015 Seismic ground motion parameters zonation map of China. Beijing: Standards Press of China, 1—242. (in Chinese)
    [19] 周越, 陈苏, 李小军, 2016. 基于小波方法的近海域地震动时频特性分析. 土木工程学报, 49(S1): 7—12.

    Zhou Y., Chen S., Li X. J., 2016. Wavelet-based time-frequency characteristic analysis on offshore ground motion. China Civil Engineering Journal, 49(S1): 7—12. (in Chinese)
    [20] 朱镜清, 1988. 地震作用下海水与海床土的耦合运动. 地震工程与工程振动, 8(2): 37—43.

    Zhu J. Q., 1988. Coupled motion between sea water and sea bed-soil under earthquake action. Earthquake Engineering and Engineering Vibration, 8(2): 37—43. (in Chinese)
    [21] Atkinson G. M., Boore D. M., 2003. Empirical ground-motion relations for subduction-zone earthquakes and their application to Cascadia and other regions. Bulletin of the Seismological Society of America, 93(4): 1703—1729. doi: 10.1785/0120020156
    [22] Atkinson G. M., Macias M. A., 2009. Predicted ground motions for great interface earthquakes in the Cascadia Subduction Zone. Bulletin of the Seismological Society of America, 99(3): 1552—1578. doi: 10.1785/0120080147
    [23] Diao H. Q., Hu J. J., Xie L. L., 2014. Effect of seawater on incident plane P and SV waves at ocean bottom and engineering characteristics of offshore ground motion records off the coast of southern California, USA. Earthquake Engineering and Engineering Vibration, 13(2): 181—194. doi: 10.1007/s11803-014-0222-4
    [24] Fu L., Li X. J., 2016. The characteristics of high-frequency attenuation of shear waves in the Longmen Shan and adjacent regions. Bulletin of the Seismological Society of America, 106(5): 1979—1990. doi: 10.1785/0120160002
    [25] Lin P. S., Lee C. T., 2008. Ground-motion attenuation relationships for Subduction-Zone earthquakes in northeastern Taiwan. Bulletin of the Seismological Society of America, 98(1): 220—240. doi: 10.1785/0120060002
    [26] Nagano M., Motosaka M., 1994.3-D wave propagation analysis of fluid-soil interaction system using hyperelements for moving loads. In: Proceedings of the 9th Japan Earthquake Engineering Symposium. Tokyo, 1291—1296.
    [27] Nakamura T., Takenaka H., Okamoto T., et al., 2012. FDM simulation of seismic-wave propagation for an aftershock of the 2009 Suruga Bay Earthquake: Effects of ocean-bottom topography and seawater layer. Bulletin of the Seismological Society of America, 102(6): 2420—2435. doi: 10.1785/0120110356
    [28] Petersen M., Harmsen S., Mueller C., et al., 2007. Documentation for the Southeast Asia Seismic Hazard Maps. Administrative Report. Reston, Virginia: U. S. Geological Survey, 1—65.
    [29] Zhao J. X., Zhang J. J., Asano A., et al., 2006. Attenuation relations of strong ground motion in Japan using site classification based on predominant period. Bulletin of the Seismological Society of America, 96(3): 898—913. doi: 10.1785/0120050122
    [30] Zhao J. X., Jiang F., Shi P., et al., 2016. Ground-motion prediction equations for subduction slab earthquakes in Japan using site class and simple geometric attenuation functions. Bulletin of the Seismological Society of America, 106(4): 1535—1551. doi: 10.1785/0120150056
  • 加载中
计量
  • 文章访问数:  1345
  • HTML全文浏览量:  95
  • PDF下载量:  341
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-26
  • 网络出版日期:  2021-07-12
  • 刊出日期:  2021-03-01

目录

    /

    返回文章
    返回