• ISSN 1673-5722
  • CN 11-5429/P

波形模板匹配定位方法在北京地区的应用

葛慧颖 李红谊 黄雅芬 王同利 刘敏 李炎臻

葛慧颖, 李红谊, 黄雅芬, 王同利, 刘敏, 李炎臻. 波形模板匹配定位方法在北京地区的应用[J]. 震灾防御技术, 2020, 15(4): 788-801. doi: 10.11899/zzfy20200413
引用本文: 葛慧颖, 李红谊, 黄雅芬, 王同利, 刘敏, 李炎臻. 波形模板匹配定位方法在北京地区的应用[J]. 震灾防御技术, 2020, 15(4): 788-801. doi: 10.11899/zzfy20200413
Ge Huiying, Li Hongyi, Huang Yafen, Wang Tongli, Liu Min, Li Yanzhen. Application of Waveform Match and Location Method in Beijing[J]. Technology for Earthquake Disaster Prevention, 2020, 15(4): 788-801. doi: 10.11899/zzfy20200413
Citation: Ge Huiying, Li Hongyi, Huang Yafen, Wang Tongli, Liu Min, Li Yanzhen. Application of Waveform Match and Location Method in Beijing[J]. Technology for Earthquake Disaster Prevention, 2020, 15(4): 788-801. doi: 10.11899/zzfy20200413

波形模板匹配定位方法在北京地区的应用

doi: 10.11899/zzfy20200413
基金项目: 

北京市自然科学基金项目 8212041

上海佘山地球物理国家野外科学观测研究站开发基金 2020K02

详细信息
    作者简介:

    葛慧颖, 女, 生于1996年。硕士研究生。主要从事天然地震小震探测研究。E-mail: ghy9611@163.com

Application of Waveform Match and Location Method in Beijing

  • 摘要: 在地震学研究中,高效的微震检测方法是既重要又具有挑战性的问题。本文对波形模板匹配检测方法、匹配定位技术、波形自相关检测技术进行详细介绍和对比,对国内外应用实例进行总结,并展望微震检测方法应用前景和发展趋势。利用基于图形处理器加速的匹配定位技术和双差地震定位法,对北京地区19个台站记录的2015年连续地震资料进行分析。基于中国地震台网中心提供的地震目录,筛选出245个地震事件作为模板事件,检测得到1229个地震事件,约为地震台网原始地震目录数量的5倍。精定位结果可显示小震沿黄庄-高丽营断裂周边小断裂分布形态特征,本文微震检测和定位结果可为研究北京地区地震活动性与发震断层深部构造提供基础数据支撑。
  • 图  1  研究区域台站分布图

    注:红色虚线表示研究区域断裂带,蓝色三角表示台站。

    Figure  1.  Distribution of stations in the study area

    图  2  研究区域模板事件分布与扫描范围图

    注:蓝色三角表示台站,黑色虚线表示断层,红点表示2015年台网地震目录中筛选出的模板事件,灰色实线框表示对应模板事件的扫描范围。

    Figure  2.  The distribution of templates and scanning range for each event

    图  3  利用基于GPU加速的匹配定位技术检测到的1个地震事件

    注:图 3(a)红点表示检测到的事件,红色虚线表示检测标准为中位数绝对偏差的9倍;图 3(b)为对应图 3(a)所示窗口的互相关值分布

    Figure  3.  A seismic event detected by GPU-ML

    图  4  模板事件(黄色)与检测到的地震事件(红色)精定位后震中分布图

    Figure  4.  The distribution of the catalog events (yellow) and detected events (red) after relocation

    图  5  地震数量-震级关系图

    Figure  5.  The magnitude–frequency relation

    图  6  扫描重定位后的台网地震目录事件(黄色)与检测到的地震事件(红色)震源深度沿不同剖面方向的垂直分布图

    Figure  6.  The distributions of catalog events (yellow) and detected events (red) focal depth along the AB, AC, IK, and IJ sections after relocation

  • 胡幸平, 崔效锋, 2013. 华北地区中部地震精定位与构造应力场研究. 震灾防御技术, 8(4): 351—360. doi: 10.3969/j.issn.1673-5722.2013.04.002
    刘翰林, 吴庆举, 2017. 地震自动识别及震相自动拾取方法研究进展. 地球物理学进展, 32(3): 1000—1007. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201703008.htm
    杨智娴, 陈运泰, 郑月军等, 2003. 双差地震定位法在我国中西部地区地震精确定位中的应用. 中国科学(D辑: 地球科学), 33(S1): 129—134. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1013.htm
    张广伟, 雷建设, 谢富仁等, 2011. 华北地区小震精定位及构造意义. 地震学报, 33(6): 699—714. doi: 10.3969/j.issn.0253-3782.2011.06.001
    张淼, 2015. 地震定位和检测. 合肥: 中国科学技术大学.
    朱艾斓, 徐锡伟, 胡平等, 2005. 首都圈地区小震重新定位及其在地震构造研究中的应用. 地质论评, 51(3): 268—274. doi: 10.3321/j.issn:0371-5736.2005.03.007
    Anikiev D., Valenta J., Staněk F., et al., 2014. Joint location and source mechanism inversion of microseismic events: Benchmarking on seismicity induced by hydraulic fracturing. Geophysical Journal International, 198(1): 249—258. doi: 10.1093/gji/ggu126
    Brodsky E. E., Lay T., 2014. Recognizing Foreshocks from the 1 April 2014 Chile Earthquake. Science, 344(6185): 700—702. doi: 10.1126/science.1255202
    Brown J. R., Beroza G. C., Shelly D. R., 2008. An autocorrelation method to detect low frequency earthquakes within tremor. Geophysical Research Letters, 35(16): L16305. doi: 10.1029/2008GL034560
    Crotwell H. P., Owens T. J., Ritsema J., 1999. The TauP toolkit: Flexible seismic travel-time and ray-path utilities. Seismological Research Letters, 70(2): 154—160. doi: 10.1785/gssrl.70.2.154
    Dreger D., Kaverina A., 2000. Seismic remote sensing for the earthquake source process and near-source strong shaking: A case study of the October 16, 1999 Hector Mine earthquake. Geophysical Research Letters, 27(13): 1941—1944. doi: 10.1029/1999GL011245
    Drew J., White R. S., Tilmann F., et al., 2013. Coalescence microseismic mapping. Geophysical Journal International, 195(3): 1773—1785. doi: 10.1093/gji/ggt331
    Earle P. S., Shearer P. M., 1994. Characterization of global seismograms using an automatic-picking algorithm. Bulletin of the Seismological Society of America, 84(2): 366—376. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=84/2/366
    Eisner L., Abbott D., Barker W. B., et al., 2008. Noise suppression for detection and location of microseismic events using a matched filter. In: SEG Technical Program Expanded Abstracts 2008. Society of Exploration Geophysicists, 1431—1435.
    Ellsworth W. L., Bulut F., 2018. Nucleation of the 1999 Izmit earthquake by a triggered cascade of foreshocks. Nature Geoscience, 11(7): 531—535. doi: 10.1038/s41561-018-0145-1
    Gharti H. N., Oye V., Roth M., et al., 2010. Automated microearthquake location using envelope stacking and robust global optimization. Geophysics, 75(4): MA27—MA46. doi: 10.1190/1.3432784
    Gibbons S. J., Ringdal F., 2006. The detection of low magnitude seismic events using array-based waveform correlation. Geophysical Journal International, 165(1): 149—166. doi: 10.1111/j.1365-246X.2006.02865.x
    Gomberg J., Reasenberg P. A., Bodin P., et al., 2001. Earthquake triggering by seismic waves following the Landers and Hector Mine earthquakes. Nature, 411(6836): 462—466. doi: 10.1038/35078053
    Grigoli F., Cesca S., Amoroso O., et al., 2013a. Automated seismic event location by waveform coherence analysis. Geophysical Journal International, 196(3): 1742—1753. http://ieeexplore.ieee.org/document/8144199/
    Grigoli F., Cesca S., Vassallo M., et al., 2013b. Automated seismic event location by travel-time stacking: An application to mining induced seismicity. Seismological Research Letters, 84(4): 666—677. doi: 10.1785/0220120191
    Hill D. P., Reasenberg P. A., Michael A., et al., 1993. Seismicity remotely triggered by the magnitude 7.3 Landers, California, earthquake. Science, 260(5114): 1617—1623. doi: 10.1126/science.260.5114.1617
    House L., 1987. Locating microearthquakes induced by hydraulic fracturing in crystalline rock. Geophysical Research Letters, 14(9): 919—921. doi: 10.1029/GL014i009p00919
    Huang H., Meng L. S., Plasencia M., et al., 2017. Matched-filter detection of the missing pre-mainshock events and aftershocks in the 2015 Gorkha, Nepal earthquake sequence. Tectonophysics, 714715: 71—81. doi: 10.1016/j.tecto.2016.08.018
    Kao H., Shan S. J., 2004. The Source-Scanning Algorithm: mapping the distribution of seismic sources in time and space. Geophysical Journal International, 157(2): 589—594. doi: 10.1111/j.1365-246X.2004.02276.x
    Kao H., Shan S. J., 2007. Rapid identification of earthquake rupture plane using source-scanning algorithm. Geophysical Journal International, 168(3): 1011—1020. doi: 10.1111/j.1365-246X.2006.03271.x
    Kato A., Obara K., Igarashi T., et al., 2012. Propagation of slow slip leading up to the 2011 Mw 9.0 Tohoku-Oki earthquake. Science, 335(6069): 705—708. doi: 10.1126/science.1215141
    Kato A., Nakagawa, S., 2014. Multiple slow-slip events during a foreshock sequence of the 2014 Iquique, Chile Mw 8.1 earthquake. Geophysical Research Letters, 41(15): 5420—5427. doi: 10.1002/2014GL061138
    Kilb D., Gomberg J., Bodin P., 2000. Triggering of earthquake aftershocks by dynamic stresses. Nature, 408(6812): 570—574. doi: 10.1038/35046046
    Kuge K., 2003. Source modeling using strong-motion waveforms: Toward automated determination of earthquake fault planes and moment-release distributions. Bulletin of the Seismological Society of America, 93(2): 639—654. doi: 10.1785/0120020076
    Langet N., Maggi A., Michelini A., et al., 2014. Continuous kurtosis-based migration for seismic event detection and location, with application to Piton de la Fournaise Volcano, La Reunion. Bulletin of the Seismological Society of America, 104(1): 229—246. doi: 10.1785/0120130107
    Liao Y. C., Kao H., Rosenberger A., et al., 2012. Delineating complex spatiotemporal distribution of earthquake aftershocks: an improved Source-Scanning Algorithm. Geophysical Journal International, 189(3): 1753—1770. doi: 10.1111/j.1365-246X.2012.05457.x
    Liu M., Li H. Y., Peng Z. G., et al., 2019. Spatial-temporal distribution of early aftershocks following the 2016 Ms 6.4 Menyuan, Qinghai, China Earthquake. Tectonophysics, 766(6): 469—479. http://www.sciencedirect.com/science/article/pii/S0040195119302537
    Liu M., Li H. Y., Zhang M., et al., 2020. Graphics processing unit-based match and locate (GPU-M & L): An improved match and locate method and its application. Seismological Research Letters, 91(2A): 1019—1029. doi: 10.1785/0220190241
    Meng X. F., Xiao Y., Peng Z. G., et al., 2012. Detecting earthquakes around Salton Sea following the 2010 Mw 7.2 El Mayor-Cucapah earthquake using GPU parallel computing. Procedia Computer Science, 9: 937—946. doi: 10.1016/j.procs.2012.04.100
    Meng X. F., Peng Z. G., Hardebeck J. L., 2013. Seismicity around Parkfield correlates with static shear stress changes following the 2003 Mw 6.5 San Simeon earthquake. Journal of Geophysical Research: Solid Earth, 118(7): 3576—3591. doi: 10.1002/jgrb.50271
    Meng X. F., Peng Z. G., 2014. Seismicity rate changes in the Salton Sea Geothermal Field and the San Jacinto Fault Zone after the 2010 Mw 7.2 El Mayor-Cucapah earthquake. Geophysical Journal International, 197(3): 1750—1762. doi: 10.1093/gji/ggu085
    Mori J., Hartzell S., 1990. Source inversion of the 1988 Upland, California, earthquake: Determination of a fault plane for a small event. Bulletin of the Seismological Society of America, 80(3): 507—518.
    Peng Z. G., Zhao P., 2009. Migration of early aftershocks following the 2004 Parkfield earthquake. Nature Geoscience, 2(12): 877—881. doi: 10.1038/ngeo697
    Peng Z. G., Hill D. P., Shelly D. R., et al., 2010. Remotely triggered microearthquakes and tremor in central California following the 2010 Mw 8.8 Chile earthquake. Geophysical Research Letters, 37(24): L24312.
    Rutledge J. T., Phillips W. S., 2003. Hydraulic stimulation of natural fractures as revealed by induced microearthquakes, Carthage Cotton Valley gas field, east Texas. Geophysics, 68(2): 441—452. doi: 10.1190/1.1567214
    Shelly D. R., Beroza G. C., Ide S., 2007. Non-volcanic tremor and low-frequency earthquake swarms. Nature, 446(7133): 305—307. doi: 10.1038/nature05666
    Stevenson P. R., 1976. Microearthquakes at Flathead Lake, Montana: A study using automatic earthquake processing. Bulletin of the Seismological Society of America, 66(1): 61—80. http://www.researchgate.net/publication/265024146_Microearthquakes_at_Flathead_Lake_Montana_A_study_using_automatic_earthquake_processing
    Waldhauser F., Ellsworth W. L., 2000. A double-difference earthquake location algorithm: method and application to the Northern Hayward fault, California. Bulletin of the Seismological Society of America, 90(6): 1353—1368. doi: 10.1785/0120000006
    Waldhauser F., Schaff D., Richards P. G., et al., 2004. Lop Nor revisited: Underground nuclear explosion locations, 1976-1996, from double-difference analysis of regional and teleseismic data. Bulletin of the Seismological Society of America, 94(5): 1879—1889. doi: 10.1785/012003184
    Walter J. I., Meng X. F., Peng Z. G., et al., 2015. Far-field triggering of foreshocks near the nucleation zone of the 5 September 2012 (Mw 7.6) Nicoya Peninsula, Costa Rica earthquake. Earth and Planetary Science Letters, 431(12): 75—86. http://www.sciencedirect.com/science/article/pii/S0012821X15005841
    Wang W. J., Meng X. F., Peng Z. G., et al., 2015. Increasing background seismicity and dynamic triggering behaviors with nearby mining activities around Fangshan Pluton in Beijing, China. Journal of Geophysical Research: Solid Earth, 120(8): 5624—5638. doi: 10.1002/2015JB012235
    Wen L. X., Long H., 2010. High-precision location of North Korea's 2009 nuclear test. Seismological Research Letters, 81(1): 26—29. doi: 10.1785/gssrl.81.1.26
    Yang H. F., Zhu L. P., Chu R. S., 2009. Fault-plane determination of the 18 April 2008 Mount Carmel, Illinois, earthquake by detecting and relocating aftershocks. Bulletin of the Seismological Society of America, 99(6): 3413—3420. doi: 10.1785/0120090038
    Zhang M., Wen L. X., 2015a. An effective method for small event detection: Match and Locate (M & L). Geophysical Journal International, 200(3): 1523—1537. doi: 10.1093/gji/ggu466
    Zhang M., Wen L. X., 2015b. Seismological evidence for a low-yield nuclear test on 12 May 2010 in North Korea. Seismological Research Letters, 86(1): 138—145. doi: 10.1785/02201401170
  • 加载中
图(6)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  35
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-08
  • 网络出版日期:  2021-04-07
  • 刊出日期:  2020-12-01

目录

    /

    返回文章
    返回