• ISSN 1673-5722
  • CN 11-5429/P

砂-粉混合料剪切波速的弯曲元及共振柱试验对比试验研究

景亮 吴琪 方怡

景亮, 吴琪, 方怡. 砂-粉混合料剪切波速的弯曲元及共振柱试验对比试验研究[J]. 震灾防御技术, 2020, 15(4): 696-707. doi: 10.11899/zzfy20200404
引用本文: 景亮, 吴琪, 方怡. 砂-粉混合料剪切波速的弯曲元及共振柱试验对比试验研究[J]. 震灾防御技术, 2020, 15(4): 696-707. doi: 10.11899/zzfy20200404
Jing Liang, Wu Qi, Fang Yi. Measurement of Shear Wave Velocity of Sand-Silt Mixtures by Bender Element and Resonant Column Tests[J]. Technology for Earthquake Disaster Prevention, 2020, 15(4): 696-707. doi: 10.11899/zzfy20200404
Citation: Jing Liang, Wu Qi, Fang Yi. Measurement of Shear Wave Velocity of Sand-Silt Mixtures by Bender Element and Resonant Column Tests[J]. Technology for Earthquake Disaster Prevention, 2020, 15(4): 696-707. doi: 10.11899/zzfy20200404

砂-粉混合料剪切波速的弯曲元及共振柱试验对比试验研究

doi: 10.11899/zzfy20200404
基金项目: 

中央级公益性科研院所基本科研业务专项 ZDJ2018-11

详细信息
    作者简介:

    景亮, 男, 生于1984年。硕士研究生, 高级工程师。主要从事轨道交通工程及交通岩土工程方面的研究。E-mail: 757065356@qq.com

Measurement of Shear Wave Velocity of Sand-Silt Mixtures by Bender Element and Resonant Column Tests

  • 摘要: 为探讨测试方法、试验条件以及级配特征对砂-粉混合料剪切波速的影响,对具有不同细粒含量FC,相对密度Dr以及初始有效围压$\sigma_{3 \mathrm{c}}^{\prime}$的砂-粉混合料进行弯曲元和共振柱试验。结果表明:当Dr =35%或50%时,剪切波速VsFC的增大先减小后增大;当Dr =60%时,VsFC的增大而减小;弯曲元试验测得的Vs明显大于共振柱试验测得的Vs,随着FC的增大,弯曲元试验与共振试验得到的Vs差值逐渐减小,而当FC>20%时,两种试验得到的Vs基本相同。在考虑Vs弥散性之后,不同FC的混合料弯曲元与共振柱试验得到的Vs结果具有较好的一致性。基于Hardin模型建立的砂-粉混合料Vs预测方法具有较好的预测效果。
  • 图  1  具有不同FC的砂-粉混合料的级配曲线

    Figure  1.  Gradation curves of sand-powder mixture with different FC

    图  2  含不同FC的砂粉混合物的最大空隙率和最小空隙率

    Figure  2.  Maximum and minimum pore ratio of sand-powder mixture with different FC

    图  3  不同初始有效围压下的饱和砂-粉混合料VsFC关系曲线

    Figure  3.  Variation of shar wave velocity Vs with fines content FC of saturated sand-silt mixtures at different initial effective pressure

    图  4  试样1的剪切波弥散曲线

    Figure  4.  Shear wave dispersion curve of case 1

    图  5  砂-粉混合料渗透系数

    Figure  5.  Hydraulic conductivity of sand-silt mixtures

    图  6  砂-粉混合料的FC与特征频率关系图

    Figure  6.  FC versus characteristic frequency diagram of sand-silt mixtures

    图  7  不同FC饱和砂-粉混合料弯曲元与共振柱修正Vs比较

    Figure  7.  Comparison of bending element and resonant column correction Vs for different FC saturated sand-powder mixtures

    图  8  饱和砂-粉混合料的Vs/(2.17-e)与(${\sigma '_{3{\rm{c}}}}$/Pa0.25关系曲线

    Figure  8.  The relationship between Vs/(2.17-e) and(${\sigma '_{3{\rm{c}}}}$/Pa)0.25 for sand-silt mixtures with different FC

    图  9  基于Hardin模型的Vs预测方程拟合参数B与细粒含量FC的关系

    Figure  9.  Relationship between fitting parameter B of Vs predicted function based on Hardin model and fines content FC

    表  1  砂-粉混合料的剪切波速测试方案

    Table  1.   Shear wave velocity test condition of sand-silt mixtures

    ID FC/% ρ/g·cm-3 Dr/% e ID FC/% ρ/g·cm-3 Dr/% e
    Case1 0 1.286 35 1.08 Case12 30 1.506 60 0.79
    Case2 0 1.352 50 0.97 Case13 50 1.358 35 1.00
    Case3 0 1.412 60 0.89 Case14 50 1.419 50 0.91
    Case4 10 1.334 35 1.01 Case15 50 1.497 60 0.81
    Case5 10 1.386 50 0.93 Case16 70 1.350 35 1.01
    Case6 10 1.424 60 0.88 Case17 70 1.387 50 0.96
    Case7 20 1.348 35 0.94 Case18 70 1.453 60 0.87
    Case8 20 1.382 50 0.95 Case19 100 1.258 35 1.23
    Case9 20 1.475 60 0.82 Case20 100 1.335 50 1.13
    Case10 30 1.386 35 0.95 Case21 100 1.409 60 0.99
    Case11 30 1.448 50 0.86
    注:每组试验工况均进行100、200、250、300、400kPa逐级等压固结并进行剪切波速测试。
    下载: 导出CSV

    表  2  不同FC砂-粉混合料试验参数

    Table  2.   Test parameters of saturated sand-silt mixtures with different FC

    ID FC/% Dr/% σ3c/kPa f/Hz fc/kHz
    S1 0 35 101  209  253  311  400 120  136  140  149  158 1.5 1.9 2.2 2.8 3.3
    S2 0 50 102  200  252  302  402 118  134  139  143  152 1.7 2.2 2.6 2.8 3.3
    S3 0 60 102  200  251  302  403 114  129  137  140  145 1.8 2.3 2.7 2.9 3.5
    S4 10 35 102  200  254  307  404 125  149  160  168  179 10.2 11.3 13.4 14.7 15.6
    S5 10 50 104  200  252  300  400 111  132  139  144  155 13.1 15.1 16.5 17.1 17.9
    S6 10 60 102  202  250  300  401 117  137  144  149  159 15.6 16.7 17.1 18.6 21.9
    S7 20 35 109  202  255  302  400 116  138  145  150  161 34.1 44.1 47.7 52.3 55.8
    S8 20 50 100  200  250  301  401 114  134  138  145  156 38.2 48.6 52.8 55.7 58.9
    S9 20 60 101  200  250  300  400 115  134  143  145  157 42.1 53.8 58.5 63.4 68.9
    S10 30 35 101  205  251  300  400 88  117  123  130  148 467.0 594.0 644.0 700.0 756.0
    S11 30 50 101  200  250  305  400 121  141  148  155  164 559.0 655.0 690.0 763.0 858.0
    S12 30 60 100  202  250  300  400 122  141  148  154  164 580.0 700.0 761.0 779.0 827.0
    S13 50 35 105  200  253  303  400 129  148  154  161  168 612.0 725.0 804.0 1000.0 1100.0
    S14 50 50 105  201  250  300  401 115  135  144  148  158 646.0 714.0 774.0 844.0 972.0
    S15 50 60 100  200  251  300  400 117  138  143  150  162 674.0 751.0 818.0 853.0 1009.0
    S16 70 35 100  200  250  300  400 110  131  135  141  152 687.0 841.0 991.0 1080.0 1170.0
    S17 70 50 101  201  253  304  405 108  130  138  143  157 718.0 807.0 1043.0 1051.0 1115.0
    S18 70 60 101  202  250  300  400 119  134  141  145  159 788.0 975.0 1057.0 1137.0 1147.0
    S19 100 35 102  200  251  301  402 96  109  116  119  128 743.0 852.0 897.0 972.0 1010.0
    S20 100 50 100  206  250  306  401 110  130  141  150  159 769.0 870.0 939.0 1012.0 1035.0
    S21 100 60 100  202  253  300  402 100  119  122  127  140 827.0 897.0 972.0 1082.0 1116.0
    注:不同孔隙比下渗透系数的换算釆用Kozeny-Carman建议公式:${k_1}:{k_2} = [e_1^3/(1 + {e_1})]:[e_2^3/(1 + {e_2})]$
    下载: 导出CSV
  • 陈云敏, 周燕国, 黄博, 2006. 利用弯曲元测试砂土剪切模量的国际平行试验. 岩土工程学报, 28(7): 874-880. doi: 10.3321/j.issn:1000-4548.2006.07.013
    顾晓强, 杨峻, 黄茂松等, 2015. 干砂弹性参数测定的弯曲-伸展元试验. 岩土力学, 36(S1): 220-224. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S1037.htm
    孔令伟, 李新明, 田湖南, 2011. 砂土渗透系数的细粒效应与其状态参数关联性. 岩土力学, 32(S2): 21-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2004.htm
    孔梦云, 陈国兴, 李小军等, 2015. 以剪切波速与地表峰值加速度为依据的地震液化确定性及概率判别法. 岩土力学, 36(5): 1239-1252, 1260. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201505003.htm
    吴琪, 陈国兴, 周正龙等, 2018. 基于颗粒接触状态理论的粗细粒混合料液化强度试验研究. 岩土工程学报, 40(3): 475-485. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201803014.htm
    杨文保, 吴琪, 陈国兴, 2019. 长江入海口原状土动剪切模量预测方法探究. 岩土力学, 40(10): 3889-3896. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910023.htm
    中华人民共和国水利部, 1999. SL 237-1999土工试验规程. 北京: 中国水利水电出版社.
    周燕国, 2007. 土结构性的剪切波速表征及对动力特性的影响. 杭州: 浙江大学.
    Andrus R. D., Stokoe Ⅱ K. H., 2000. Liquefaction resistance of soils from shear-wave velocity. Journal of Geotechnical and Geoenvironmental Engineering, 126(11): 1015-1025. doi: 10.1061/(ASCE)1090-0241(2000)126:11(1015)
    Biot M. A., 1956a. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range[J]. The Journal of the Acoustical Society of America, 28(2): 168-178. doi: 10.1121/1.1908239
    Biot M. A., 1956b. Theory of propagation of elastic waves in a fluid-saturated porous solid. Ⅱ. Higher frequency range[J]. The Journal of the Acoustical Society of America, 28(2): 179-191. doi: 10.1121/1.1908241
    Brignoli E. G. M., Gotti M., Stokoe K. H., 1996. Measurement of shear waves in laboratory specimens by means of piezoelectric transducers. Geotechnical Testing Journal, 19(4): 384-397. doi: 10.1520/GTJ10716J
    Choo H., Burns S. E., 2015. Shear wave velocity of granular mixtures of silica particles as a function of finer fraction, size ratios and void ratios. Granular Matter, 17(5): 567-578. doi: 10.1007/s10035-015-0580-2
    Dyvik R., Madshus C., 1985. Lab measurements of Gmax using bender elements. In: Advances in the Art of Testing Soils under Cyclic Conditions. New York: American Society of Civil Engineers, 186-196.
    Hardin B. O., Richart Jr F. E., 1963. Elastic wave velocities in granular soils. Journal of the Soil Mechanics and Foundations Division, 89(SM1): 33-65. http://www.researchgate.net/publication/349267063_Elastic_Wave_Velocities_in_Granular_Soils
    Hardin B. O., Black W. L., 1966. Sand stiffness under various triaxial stresses. Journal of the Soil Mechanics and Foundations Division, 92(SM2): 27-42. http://www.researchgate.net/publication/349272740_Sand_Stiffness_Under_Various_Triaxial_Stresses
    Hardin B. O., Drnevich V. P., 1972. Shear modulus and damping in soils: Design equations and curves. Journal of the Soil Mechanics and Foundations Division, 98(7): 667-692. doi: 10.1061/JSFEAQ.0001760
    Huang Y. T., Huang A. B., Kuo Y. C., et al., 2004. A laboratory study on the undrained strength of a silty sand from Central Western Taiwan. Soil Dynamics and Earthquake Engineering, 24(9-10): 733-743. doi: 10.1016/j.soildyn.2004.06.013
    Iwasaki T., Tatsuoka F., 1977. Effects of grain size and grading on dynamic shear moduli of sands. Soils and Foundations, 17(3): 19-35. doi: 10.3208/sandf1972.17.3_19
    Nagaraj T. S., Pandian N. S., Raju P. S. R. N., 1991. An approach for prediction of compressibility and permeability behaviour of sand-bentonite mixes. Indian Geotechnical Journal, 21(3): 271-282. http://www.researchgate.net/publication/285909955_An_approach_for_prediction_of_compressibility_and_permeability_behaviour_of_sand-bentonite_mixes
    Rahman M. M., Lo S. R., Gnanendran C. T., 2008. On equivalent granular void ratio and steady state behaviour of loose sand with fines. Canadian Geotechnical Journal, 45(10): 1439-1456. doi: 10.1139/T08-064
    Salgado R., Bandini P., Karim A., 2000. Shear strength and stiffness of silty sand. Journal of Geotechnical and Geoenvironmental Engineering, 126(5): 451-462. doi: 10.1061/(ASCE)1090-0241(2000)126:5(451)
    Santamarina J. C., Klein K. A., Fam M. A., 2001. Soils and waves: Particulate materials behavior, characterization and process monitoring. New York: J. Wiley & Sons, 238-282.
    Souto A., Hartikainen J., Özüdoğru K., 1994. Measurement of dynamic parameters of road pavement materials by the bender element and resonant column tests. Géotechnique, 44(3): 519-526. doi: 10.1680/geot.1994.44.3.519
    Sridharan A., Nagaraj H. B., 2005. Hydraulic conductivity of remolded fine-grained soils versus index properties. Geotechnical & Geological Engineering, 23(1): 43. doi: 10.1007/s10706-003-5396-x
    Yang J., Yan X. R., 2009. Site response to multi-directional earthquake loading: A practical procedure. Soil Dynamics and Earthquake Engineering, 29(4): 710-721. doi: 10.1016/j.soildyn.2008.07.008
    Yang J., Liu X., 2016. Shear wave velocity and stiffness of sand: The role of non-plastic fines[J]. Géotechnique, 66(6): 500-514. doi: 10.1680/jgeot.15.P.205
    Youn J. U., Choo Y. W., Kim D. S., 2008. Measurement of small-strain shear modulus Gmax of dry and saturated sands by bender element, resonant column, and torsional shear tests. Canadian Geotechnical Journal, 45(10): 1426-1438. doi: 10.1139/T08-069
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  32
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-14
  • 网络出版日期:  2021-04-07
  • 刊出日期:  2020-12-01

目录

    /

    返回文章
    返回