• ISSN 1673-5722
  • CN 11-5429/P

地震动残差分析盆地附加放大效应:日本关东盆地为例

李春果 王宏伟 温瑞智 任叶飞

李春果, 王宏伟, 温瑞智, 任叶飞. 地震动残差分析盆地附加放大效应:日本关东盆地为例[J]. 震灾防御技术, 2020, 15(4): 684-695. doi: 10.11899/zzfy20200403
引用本文: 李春果, 王宏伟, 温瑞智, 任叶飞. 地震动残差分析盆地附加放大效应:日本关东盆地为例[J]. 震灾防御技术, 2020, 15(4): 684-695. doi: 10.11899/zzfy20200403
Li Chunguo, Wang Hongwei, Wen Ruizhi, Ren Yefei. Basin Extra Amplification Effects from Seismic Ground-Motion Residual Analysis: A Case Study of Kanto Basin, Japan[J]. Technology for Earthquake Disaster Prevention, 2020, 15(4): 684-695. doi: 10.11899/zzfy20200403
Citation: Li Chunguo, Wang Hongwei, Wen Ruizhi, Ren Yefei. Basin Extra Amplification Effects from Seismic Ground-Motion Residual Analysis: A Case Study of Kanto Basin, Japan[J]. Technology for Earthquake Disaster Prevention, 2020, 15(4): 684-695. doi: 10.11899/zzfy20200403

地震动残差分析盆地附加放大效应:日本关东盆地为例

doi: 10.11899/zzfy20200403
基金项目: 

中国地震局工程力学研究所基本科研业务 2018B03

国家自然科学基金资助项目 51808514

国家自然科学基金资助项目 51878632

详细信息
    作者简介:

    李春果, 女, 生于1995年。博士研究生。主要从事地震动场地效应研究。E-mail: lcggzl007@163.com

    通讯作者:

    王宏伟, 男, 生于1990年。助理研究员。主要从事地震动特征及预测等方面研究。E-mail: whw1990413@163.com

Basin Extra Amplification Effects from Seismic Ground-Motion Residual Analysis: A Case Study of Kanto Basin, Japan

  • 摘要: 我国地震动预测及地震危险性分析通常仅考虑局部场地浅层岩土层对地震动的放大效应,不能考虑较大范围的地质条件影响,如沉积盆地厚沉积层对地震动的附加放大效应通常被忽略,造成盆地内地震动及地震危险性预测结果普遍被低估。本文以地震动观测记录数据充足的日本关东盆地为例,采用地震动残差分析方法评估盆地附加放大效应,分析覆盖层厚度、盆地内空间位置、震级、震源距对地震动放大效应的影响,建立关东盆地附加放大效应经验评估模型。分析表明:关东盆地附加放大效应与反应谱周期相关,整体上从短周期的1.0逐渐增大至周期为5s时的1.5,附加放大效应与覆盖层厚度相关性较小,主要受盆地空间位置和震源距的影响;盆地北部边缘及西北部地区附加放大效应更强烈,盆地南部附加放大效应较小,这可能与盆地边缘效应密切相关。本文建立的关东盆地附加放大效应经验模型略高于BSSA14和ASK14模型的放大效应预测。相关研究结果可用于我国地震动预测、下一代地震动区划图修订等。
  • 图  1  选取的地震事件及关东盆地内K-NET台站分布

    Figure  1.  Distribution of selected seismic events and K-NET stations in the Kanto basin

    图  2  震级-震源距分布及其0.3s、3s的水平向PSA

    Figure  2.  Magnitude vs. hypocentral distance and observed horizontal PSA at period of 0.3s and 3s for recordings under consideration

    图  3  覆盖层厚度对盆地附加放大效应的影响

    Figure  3.  The influence of sedimentary thickness on extra amplification effect

    图  4  盆地内K-NET台站的附加放大效应空间分布

    Figure  4.  Spatial distributions of extra amplification effects at various spectral periods in the Kanto basin

    图  5  震级对盆地附加放大效应的影响

    Figure  5.  The influence of magnitude on extra amplification effect

    图  6  震源距对盆地附加放大效应的影响

    Figure  6.  The influence of hypocentral distance on extra amplification effect

    图  7  基础经验模型拟合曲线及盆地附加放大效应经验模型

    Figure  7.  The fitness curve of basic empirical model and the empirical model of extra amplification effect in Kanto basin

    图  8  经验模型与BSSA14、ASK14模型盆地项对比

    Figure  8.  The comparisons of empirical model with model BSSA14 and model ASK14

    表  1  基础经验模型的拟合系数

    Table  1.   Fitness coefficients of empirical basic model

    系数
    C T1 T2 n1 n2
    - 0.08750 1.6209 7.3731 0.7381 1.7743
    下载: 导出CSV

    表  2  震源距调整基础模型的拟合系数

    Table  2.   Fitness coefficients of adjusted model scaling with hypocentral distance

    震源距/km 系数
    Di T3i n3i
    0<Rhyp≤100 0.3511 0.9702 -0.2742
    100<Rhyp≤200 -0.1264 1.5950 0.1258
    200<Rhyp≤300 -0.6790 1.3022 0.6643
    下载: 导出CSV
  • 刘启方, 于彦彦, 章旭斌, 2013. 施甸盆地三维地震动研究. 地震工程与工程振动, 33(4): 54-60. http://www.cnki.com.cn/Article/CJFDTotal-DGGC201304007.htm
    刘烁宇, 李英民, 2018. 盆地型长周期地震动的判别准则. 湖南大学学报(自然科学版), 45(5): 85-93. http://www.cnki.com.cn/Article/CJFDTotal-HNDX201805010.htm
    潘华, 张萌, 李金臣, 2017. 美国地震区划图的发展——地震危险性图与抗震设计图. 震灾防御技术, 12(3): 511-522. http://zzfy.eq-j.cn/zzfyjs/ch/reader/view_abstract.aspx?flag=1&file_no=20170307&journal_id=zzfyjs
    王海云, 2011. 渭河盆地中土层场地对地震动的放大作用. 地球物理学报, 54(1): 137-150. doi: 10.3969/j.issn.0001-5733.2011.01.015
    张萌, 潘华, 李金臣, 2017. 美国建筑抗震设计的法规体系与设计地震动的确定. 震灾防御技术, 12(2): 306-318. http://zzfy.eq-j.cn/zzfyjs/ch/reader/view_abstract.aspx?flag=1&file_no=20170207&journal_id=zzfyjs
    Abrahamson N. A., Silva W. J., Kamai R., 2014. Summary of the ASK14 ground motion relation for active crustal regions. Earthquake Spectra, 30(3): 1025-1055. doi: 10.1193/070913EQS198M
    Atik L. A., Abrahamson N., Bommer J. J., et al., 2010. The variability of ground-motion prediction models and its components. Seismological Research Letters, 81(5): 794-801. doi: 10.1785/gssrl.81.5.794
    Boore D. M., Stewart J. P., Seyhan E., et al., 2014. NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes. Earthquake Spectra, 30(3): 1057-1085. doi: 10.1193/070113EQS184M
    Chandramohan R., Baker J. W., Deierlein G. G., 2016. Quantifying the influence of ground motion duration on structural collapse capacity using spectrally equivalent records. Earthquake Spectra, 32(2): 927-950. doi: 10.1193/122813eqs298mr2
    Denolle M. A., Miyake H., Nakagawa S., et al., 2014. Long-period seismic amplification in the Kanto Basin from the ambient seismic field. Geophysical Research Letters, 41(7): 2319-2325. doi: 10.1002/2014GL059425
    Eads L., Miranda E., Lignos D. G., 2015. Average spectral acceleration as an intensity measure for collapse risk assessment. Earthquake Engineering and Structural Dynamics, 44(12): 2057-2073. doi: 10.1002/eqe.2575
    Frankel A., Stephenson W., Carver D., 2009. Sedimentary basin effects in Seattle, Washington: ground-motion observations and 3D simulations. Bulletin of the Seismological Society of America, 99(3): 1579-1611. doi: 10.1785/0120080203
    Furumura T., Hayakawa T., 2007. Anomalous propagation of long-period ground motions recorded in Tokyo during the 23 October 2004 Mw 6.6 Niigata-ken Chuetsu, Japan, earthquake. Bulletin of the Seismological Society of America, 97(3): 863-880. doi: 10.1785/0120060166
    Hruby C. E., Beresnev I. A., 2003. Empirical corrections for basin effects in stochastic ground-motion prediction, based on the Los Angeles Basin analysis. Bulletin of the Seismological Society of America, 93(4): 1679-1690. doi: 10.1785/0120020121
    Koketsu K., Miyake H., Afnimar, et al., 2009. A proposal for a standard procedure of modeling 3-D velocity structures and its application to the Tokyo metropolitan area, Japan. Tectonophysics, 472(1-4): 290-300. doi: 10.1016/j.tecto.2008.05.037
    Marafi N. A., Eberhard M. O., Berman J. W., et al., 2017. Effects of deep basins on structural collapse during large subduction earthquakes. Earthquake Spectra, 33(3): 963-997. doi: 10.1193/071916eqs114m
    Meza-Fajardo K. C., Semblat J. F., Chaillat S., et al., 2016. Seismic-wave amplification in 3D alluvial basins: 3D/1D amplification ratios from fast multipole BEM simulations. Bulletin of the Seismological Society of America, 106(3): 1267-1281. doi: 10.1785/0120150159
    Moschetti M. P., Thompson E. M., Rekoske J., et al., 2020. Ground-motion amplification in Cook Inlet region, Alaska from intermediate-depth earthquakes, including the 2018 Mw 7.1 anchorage earthquake. Seismological Research Letters, 91(1): 142-152. doi: 10.1785/0220190179
    Skarlatoudis, A., Hosseini, M., Somerville, P. 2015. Basin Amplification Factors for Cascadia from the 2011 Tohoku Earthquake. 1-67.
    Wang H. Y., Wang S. Y., 2015. A new method for estimating VS(30) from a shallow shear-wave velocity profile (depth < 30m). Bulletin of the Seismological Society of America, 105(3): 1359-1370. doi: 10.1785/0120140103
    Wen R. Z., Xu P. B., Wang H. W., et al., 2018. Single-station standard deviation using strong-motion data from Sichuan Region, China. Bulletin of the Seismological Society of America, 108(4): 2237-2247. doi: 10.1785/0120170276
    Yuan, X. M., Liao, Z. P., 1995. Scattering of plane SH waves by a cylindrical alluvial valley of circular-acr cross-section. Earthquake Engineering and Structural Dynamics, 24(10): 1303-1313. doi: 10.1002/eqe.4290241002
    Zhao J. X., Zhang J., Asano A., et al., 2006. Attenuation relations of strong ground motion in Japan using site classification based on predominant period. Bulletin of the Seismological Society of America, 96(3): 898-913. doi: 10.1785/0120050122
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  109
  • HTML全文浏览量:  41
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-21
  • 网络出版日期:  2021-04-07
  • 刊出日期:  2020-12-01

目录

    /

    返回文章
    返回