Response Analysis of Twin Tunnels Under Horizontal and Vertical Earthquake Loading
-
摘要: 基于有效的土-结相互作用有限元数值模拟方法,利用有限元软件ABAQUS对水平及竖向地震共同作用下双线盾构隧道的地震响应进行分析研究。地震动输入选取近场地震Loma、ChiChi、Mammoth和WoLong的基岩水平及竖向加速度时程记录。结果表明,不同近场地震记录对隧道结构的作用不同,隧道的地震反应与场地性质及地震动的频谱特性密切相关。对比隧道在水平及竖向地震动共同作用下的响应与单向水平地震动作用下的响应,发现隧道的最大地震附加内力及其分布均发生较大的变化,在隧道结构抗震设计中需引起重视。另外,分析中还考虑了在双向地震动共同作用下,隧道间距、土-结接触面的摩擦系数、土-结相对刚度、输入的地震记录和竖向地震动相对强度对隧道地震响应的影响等,研究结果对隧道工程的抗震设计具有一定的参考价值。Abstract: Based on an effective Finite Element procedure for soil-structure interaction, the seismic response of twin tunnels under combined horizontal and vertical earthquake loading were analyzed by using the ABAQUS package. The horizontal and vertical acceleration time history records at bedrock from the near-field earthquakes of Loma, ChiChi, Mammoth and WoLong were selected as the input ground motions. The results showed that the seismic responses of the tunnels were different as the input earthquake records changed, and the seismic responses of the tunnels were related to the field properties and the vibration frequency characteristics of the input ground motions. By comparing the seismic responses under bi-directional and unidirectional earthquake loadings, it was found that both the distributions and the magnitudes of the seismic additional internal forces were changed greatly, which should be taken into account in the seismic design of tunnels. In addition, parametric studies were carried out on the effects of the space between two tunnels, friction coefficient of contact surface between soil and tunnels, relative stiffness of the soil-structure system, input earthquake motion and relative intensity of vertical earthquake motion. The results may provide a good reference for the seismic design of tunnels.
-
表 1 土层的相应参数
Table 1. Corresponding parameters of soil layers
土层类别 厚度/m 初始剪切模量/MPa 密度/×103 kg·m-3 A 2B r0 /×10-4 泊松比 黏性土 18 50.67 1.94 1.12 0.82 9.00 0.35 砂质黏性土 4 100.84 1.98 1.00 0.76 7.38 0.32 中粗砂 5 149.73 1.98 1.00 0.70 9.67 0.30 砂层 13 300.84 1.98 1.10 0.74 9.50 0.30 砾质黏性土 16 361.57 1.96 1.20 0.74 10.03 0.30 表 2 隧道管片的相应参数
Table 2. Corresponding parameters of the tunnel segments
杨氏模量/GPa 泊松比 密度/kg·m-3 外径/m 厚度/m 35.5 0.2 2600 6.2 0.35 表 3 近场地震记录加速度幅值
Table 3. Acceleration amplitudes of the near-field seismic records
近场地震记录 水平向加速度峰值/g 竖直向加速度峰值/g 竖直/水平 Arias intensity/m·s-1 Loma 0.2 0.106 0.53 0.32 ChiChi 0.2 0.132 0.66 0.88 Mammoth 0.2 0.056 0.28 0.09 WoLong 0.2 0.200 1.00 0.54 -
陈国兴, 陈苏, 杜修力等, 2016. 城市地下结构抗震研究进展. 防灾减灾工程学报, 36(1): 1-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201601002.htm 崔光耀, 王明年, 林国进等, 2011. 汶川地震区典型公路隧道衬砌震害类型统计分析. 中国地质灾害与防治学报, 22(1): 122-127. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201101022.htm 杜修力, 李洋, 许成顺等, 2018a. 1995年日本阪神地震大开地铁车站震害原因及成灾机理分析研究进展. 岩土工程学报, 40(2): 223-236. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802003.htm 杜修力, 许紫刚, 袁雪纯等, 2018b. 地震动峰值位移和峰值速度对地下结构地震反应的影响. 震灾防御技术, 13(2): 293-303. http://zzfy.eq-j.cn/zzfyjs/ch/reader/view_abstract.aspx?flag=1&file_no=20180205&journal_id=zzfyjs 黄宏伟, 徐凌, 严佳梁等, 2006. 盾构隧道横向刚度有效率研究. 岩土工程学报, 28(1): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200601001.htm 刘如山, 胡少卿, 石宏彬, 2007. 地下结构抗震计算中拟静力法的地震荷载施加方法研究. 岩土工程学报, 29(2): 237-242. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200702016.htm 楼梦麟, 陈清军, 1999. 侧向边界对桩基地震反应影响的研究. 上海: 同济大学出版社. 苗雨, 孙甜粲, 李威, 2014. 基于多尺度几何有限元模型分析的地铁盾构隧道地震反应研究. 地震工程与工程振动, 34(S1): 915-918. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC2014S1145.htm 赵丁凤, 阮滨, 陈国兴等, 2017. 基于Davidenkov骨架曲线模型的修正不规则加卸载准则与等效剪应变算法及其验证. 岩土工程学报, 39(5): 888-895. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705018.htm 赵武胜, 何先志, 陈卫忠等, 2012. 盾构隧道地震响应分析方法及工程应用. 岩土力学, 33(8): 2415-2421. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201208029.htm 中华人民共和国住房和城乡建设部, 2014. GB 50909-2014城市轨道交通结构抗震设计规范. 北京: 中国标准出版社. 朱育才, 2012. 近断层脉冲型地震动作用下隧道抗减震研究. 重庆: 重庆交通大学. Abate G., Massimino M. R., 2017. Numerical modelling of the seismic response of a tunnel-soil-aboveground building system in Catania (Italy). Bulletin of Earthquake Engineering, 15(1): 469-491. Balendra T., Thambiratnam D. P., Koh C. G., et al., 1984. Dynamic response of twin circular tunnels due to incident SH-waves. Earthquake Engineering and Structural Dynamics, 12(2): 181-201. doi: 10.1002/eqe.4290120204 Cilingir U., Madabhushi S P G., 2011. A model study on the effects of input motion on the seismic behaviour of tunnels. Soil Dynamics and Earthquake Engineering, 31(3): 452-462. http://www.sciencedirect.com/science/article/pii/S026772611000240X Kouretzis G. P., Sloan S. W., Carter J. P., 2013. Effect of interface friction on tunnel liner internal forces due to seismic S- and P-wave propagation. Soil Dynamics and Earthquake Engineering, 46: 41-51. http://www.sciencedirect.com/science/article/pii/S0267726112002692 Law H K., Lam I P., 2001. Application of periodic boundary for large pile group. Journal of Geotechnical and Geoenvironmental Engineering, 127(10): 889-892. http://www.researchgate.net/publication/245293547_Application_of_Periodic_Boundary_for_Large_Pile_Group Lee K. M., Ge X. M., 2001. The equivalence of a jointed shield-driven tunnel lining to a continuous ring structure. Canadian Geotechnical Journal, 38(3): 461-483. doi: 10.1139/t00-107 Lu J. C., Elgamal A., Yan L. J., et al., 2011. Large-scale numerical modeling in geotechnical earthquake engineering. International Journal of Geomechanics, 11(6): 490-503. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/020416988579.html Penzien J., Wu C. L., 1998. Stresses in linings of bored tunnels. Earthquake Engineering Structural Dynamics, 27(3): 283-300. doi: 10.1002/(SICI)1096-9845(199803)27:3<283::AID-EQE732>3.0.CO;2-T/pdf Sedarat H., Kozak A., Hashash Y. M. A., et al., 2009. Contact interface in seismic analysis of circular tunnels. Tunnelling and Underground Space Technology, 24(4): 482-490. http://www.sciencedirect.com/science/article/pii/S0886779808001132 Sharma S., Judd W. R., 1991. Underground opening damage from earthquakes. Engineering Geology, 30(3-4): 263-276. http://www.onacademic.com/detail/journal_1000034559003210_4d4d.html Wang J. N., 1993. Seismic design of tunnels: a state-of-the-art approach, monograph, monograph 7, parsons. New York: Brinckerhoff, Quade and Douglas Inc. Wang W. L., Wang T. T., Su J. J., et al., 2001. Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi Earthquake. Tunnelling and Underground Space Technology, 16(3): 133-150. http://www.sciencedirect.com/science/article/pii/S0886779801000475 Zhang L., Liu H. B., 2017. Seismic response of clay-pile-raft-superstructure systems subjected to far-field ground motions. Soil Dynamics and Earthquake Engineering, 101: 209-224. http://www.sciencedirect.com/science/article/pii/S0267726117302956