• ISSN 1673-5722
  • CN 11-5429/P

考虑水-桩-土相互作用的单桩式海上风机结构系统自振频率解析解

赵密 常逸夫 王丕光 杜修力

赵密, 常逸夫, 王丕光, 杜修力. 考虑水-桩-土相互作用的单桩式海上风机结构系统自振频率解析解[J]. 震灾防御技术, 2020, 15(4): 659-669. doi: 10.11899/zzfy20200401
引用本文: 赵密, 常逸夫, 王丕光, 杜修力. 考虑水-桩-土相互作用的单桩式海上风机结构系统自振频率解析解[J]. 震灾防御技术, 2020, 15(4): 659-669. doi: 10.11899/zzfy20200401
Zhao Mi, Chang Yifu, Wang Piguang, Du Xiuli. An Analytical Natural Frequency Solution of Monopile Offshore Wind Turbine Considering Pile-soil Interaction[J]. Technology for Earthquake Disaster Prevention, 2020, 15(4): 659-669. doi: 10.11899/zzfy20200401
Citation: Zhao Mi, Chang Yifu, Wang Piguang, Du Xiuli. An Analytical Natural Frequency Solution of Monopile Offshore Wind Turbine Considering Pile-soil Interaction[J]. Technology for Earthquake Disaster Prevention, 2020, 15(4): 659-669. doi: 10.11899/zzfy20200401

考虑水-桩-土相互作用的单桩式海上风机结构系统自振频率解析解

doi: 10.11899/zzfy20200401
基金项目: 

国家自然科学青年基金项目 51508528

国家自然科学基金创新研究群体项目 51421005

详细信息
    作者简介:

    赵密, 男, 1980年生。博士, 教授, 博士生导师。主要从事重大工程结构抗震研究。Email: zhaomi@bjut.edu.cn

    通讯作者:

    王丕光, 男, 1985年生。博士, 博士生导师。主要从事近海结构抗震研究。Email: wangpiguang1985@126.com

An Analytical Natural Frequency Solution of Monopile Offshore Wind Turbine Considering Pile-soil Interaction

  • 摘要: 海上风机结构系统频率是海上风机结构和基础设计考虑的关键因素之一,桩-土相互作用对海上风机结构系统频率影响显著。基于欧拉-伯努利梁理论和传递矩阵方法,考虑水-桩-土相互作用及塔筒变截面特性,建立单桩式海上风机结构系统横向振动自振频率特征方程;将桩-水相互作用等效为附加质量、桩-土相互作用等效为线性弹簧,变截面塔筒等效为多段均匀梁,利用MATLAB中fsolve函数求解固有频率。通过与有限元分析结果进行对比,验证本文方法精度与有效性,并将本文方法应用于实际工程中,研究桩基础埋深、上部质量、转动惯量和桩-水相互作用对单桩式海上风机结构系统自振频率的影响。
  • 图  1  风机结构简化模型

    Figure  1.  Simplified turbine model

    图  2  频率随分段数变化曲线

    Figure  2.  The curve of frequency varing with the number of segments

    图  3  桩基础埋深对结构一阶自振频率的影响

    Figure  3.  Influence of pile length on natural vibration frequency

    图  4  上部质量对结构一阶自振频率的影响

    Figure  4.  Influence of top mass on natural vibration frequency

    图  5  上部结构转动惯量对结构一阶自振频率的影响

    Figure  5.  Influence of rotary inertia on natural vibration frequency

    图  6  截面转动惯量对结构一阶自振频率的影响

    Figure  6.  Influence of section inertia on natural vibration frequency

    图  7  桩-水相互作用对结构一阶自振频率的影响

    Figure  7.  Influence of hydraulic added on natural vibration frequency

    表  1  NREL-5MW基准风机刚性地基模型验证

    Table  1.   Verification of NREL-5MW rigid foundation model

    频率验证 频率/rad·s-1
    一阶 二阶 三阶
    解析解 5.09 23.93 59.94
    数值解 5.12 24.14 60.25
    误差/% 0.54 0.85 0.52
    下载: 导出CSV

    表  2  NREL-5MW基准风机桩-土相互作用模型验证

    Table  2.   Verification of NREL-5MW pile-soil interaction model

    频率验证 频率/rad·s-1
    一阶 二阶 三阶
    解析解 1.456 10.963 29.210
    数值解 1.443 10.725 28.493
    误差/% 0.902 2.213 2.515
    下载: 导出CSV

    表  3  Welney 1S 3.6MW风机桩-土相互作用模型一阶自振频率对比

    Table  3.   Verification of Welney 1S 3.6MW pile-soil interaction model

    频率验证 实测值 Arany等(2015) 解析解
    频率/rad·s-1 0.350 0.331 0.3484
    误差/% 5.429 0.457
    下载: 导出CSV
  • 崔灿, 蒋晗, 李映辉, 2012. 变截面梁横向振动特性半解析法. 振动与冲击, 31(14): 85-88. doi: 10.3969/j.issn.1000-3835.2012.14.018
    王丕光, 黄义铭, 赵密等, 2019. 椭圆形柱体地震动水压力的简化分析方法. 震灾防御技术, 14(1): 24-34. http://zzfy.eq-j.cn/zzfyjs/ch/reader/view_abstract.aspx?flag=1&file_no=20190103&journal_id=zzfyjs
    杨春宝, 王睿, 张建民, 2018. 单桩基础型近海风机系统自振频率实用计算方法. 工程力学, 35(4): 219-225. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201804025.htm
    余璐庆, 吕学金, 汤旅军等, 2018. 一种改进后的海上风机动力特性理论分析方法研究. 地震工程学报, 40(2): 225-232, 251. doi: 10.3969/j.issn.1000-0844.2018.02.225
    Adhikari S., Bhattacharya S., 2011. Vibrations of wind-turbines considering soil-structure interaction. Wind and Structures, 14(2): 85-112. doi: 10.12989/was.2011.14.2.085
    Adhikari S., Bhattacharya S., 2012. Dynamic analysis of wind turbine towers on flexible foundations. Shock and Vibration, 19: 37-56. doi: 10.1155/2012/408493
    Andersen L. V., Vahdatirad M. J., Sichani M. T., et al., 2012. Natural frequencies of wind turbines on monopile foundations in clayey soils-A probabilistic approach. Computers and Geotechnics, 43: 1-11. doi: 10.1016/j.compgeo.2012.01.010
    Arany L., Bhattacharya S., Adhikari S., et al., 2015. An analytical model to predict the natural frequency of offshore wind turbines on three-spring flexible foundations using two different beam models. Soil Dynamics and Earthquake Engineering, 74: 40-45. doi: 10.1016/j.soildyn.2015.03.007
    Bhattacharya S., Adhikari S., 2011. Experimental validation of soil-structure interaction of offshore wind turbines. Soil Dynamics and Earthquake Engineering, 31(5-6): 805-816. doi: 10.1016/j.soildyn.2011.01.004
    Bush E., Manuel L., 2009. Foundation models for offshore wind turbines. In: Proceedings of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Orlando, Florida: AIAA.
    Chiou J. S., Hung W. Y., Lee Y. T., et al., 2020. Combined dynamic structure-pile-soil interaction analysis considering inertial and kinematic effects. Computers and Geotechnics, 125: 103671. doi: 10.1016/j.compgeo.2020.103671
    Jonkman J., Butterfield S., Musial W., et al., 2009. Definition of a 5-MW reference wind turbine for offshore system development. Golden, CO: National Renewable Energy Lab. (NREL), 75.
    Veritas DN., 2002. Guidelines for design of wind turbines. 2nd ed. Copenhagen: DNV/Risoø.
    Van der Tempel J., Molenaar D. P., 2002. Wind turbine structural dynamics-a review of the principles for modern power generation, onshore and offshore. Wind Engineering, 26(4): 211-222. doi: 10.1260/030952402321039412
    Wang P. G., Zhao M., Du X. L., et al., 2018a. Wind, wave and earthquake responses of offshore wind turbine on monopile foundation in clay. Soil Dynamics and Earthquake Engineering, 113: 47-57. doi: 10.1016/j.soildyn.2018.04.028
    Wang P. G., Zhao M., Du X. L., 2018b. Analytical solution and simplified formula for earthquake induced hydrodynamic pressure on elliptical hollow cylinders in water. Ocean Engineering, 148: 149-160. doi: 10.1016/j.oceaneng.2017.11.019
    Wang P. G., Zhao M., Du X. L., et al., 2018c. Simplified evaluation of earthquake-induced hydrodynamic pressure on circular tapered cylinders surrounded by water. Ocean Engineering, 164: 105-113. doi: 10.1016/j.oceaneng.2018.06.048
    Wang P. G., Zhao M., Du X. L., et al., 2019. A simple added mass model for simulating elliptical cylinder vibrating in water under earthquake action. Ocean Engineering, 179: 351-360. doi: 10.1016/j.oceaneng.2019.02.046
    Wang X. F., Zeng X. W., Li J. L., et al., 2018d. A review on recent advancements of substructures for offshore wind turbines. Energy Conversion and Management, 158: 103-119. doi: 10.1016/j.enconman.2017.12.061
    Zuo H. R., Bi K. M., Hao H., 2018. Dynamic analyses of operating offshore wind turbines including soil-structure interaction. Engineering Structures, 157: 42-62. doi: 10.1016/j.engstruct.2017.12.001
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  143
  • HTML全文浏览量:  135
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-02
  • 网络出版日期:  2021-04-07
  • 刊出日期:  2020-12-01

目录

    /

    返回文章
    返回