An Analytical Natural Frequency Solution of Monopile Offshore Wind Turbine Considering Pile-soil Interaction
-
摘要: 海上风机结构系统频率是海上风机结构和基础设计考虑的关键因素之一,桩-土相互作用对海上风机结构系统频率影响显著。基于欧拉-伯努利梁理论和传递矩阵方法,考虑水-桩-土相互作用及塔筒变截面特性,建立单桩式海上风机结构系统横向振动自振频率特征方程;将桩-水相互作用等效为附加质量、桩-土相互作用等效为线性弹簧,变截面塔筒等效为多段均匀梁,利用MATLAB中fsolve函数求解固有频率。通过与有限元分析结果进行对比,验证本文方法精度与有效性,并将本文方法应用于实际工程中,研究桩基础埋深、上部质量、转动惯量和桩-水相互作用对单桩式海上风机结构系统自振频率的影响。Abstract: The frequency of offshore wind turbine system is one of the pivotal factors that needs to be considered during the design of the structure and foundation. Based on the Euler-Bernoulli beam theory and transfer matrix method, the characteristic equation of natural vibration frequency are established by considering the water-pile-soil interaction and variation of cross-sectional geometry of the wind turbine tower. The pile-water interaction is equivalent to additional mass, the pile-soil interaction is equivalent to linear spring and the cylinder with variable section is equivalent to a multi-section uniform beam in this model. And then the equation is solved by 'fsolve' function in MATLAB. The accuracy and validity of the proposed method are verified against the finite element results. Finally, the influence of foundation depth, upper mass, rotational inertia and pile-water interaction on natural frequency of monopile offshore wind turbine is discussed for practical engineering.
-
Key words:
- Offshore wind turbine /
- Monopile /
- Natural frequency /
- Pile-soil interaction /
- Analytical solution
-
表 1 NREL-5MW基准风机刚性地基模型验证
Table 1. Verification of NREL-5MW rigid foundation model
频率验证 频率/rad·s-1 一阶 二阶 三阶 解析解 5.09 23.93 59.94 数值解 5.12 24.14 60.25 误差/% 0.54 0.85 0.52 表 2 NREL-5MW基准风机桩-土相互作用模型验证
Table 2. Verification of NREL-5MW pile-soil interaction model
频率验证 频率/rad·s-1 一阶 二阶 三阶 解析解 1.456 10.963 29.210 数值解 1.443 10.725 28.493 误差/% 0.902 2.213 2.515 表 3 Welney 1S 3.6MW风机桩-土相互作用模型一阶自振频率对比
Table 3. Verification of Welney 1S 3.6MW pile-soil interaction model
频率验证 实测值 Arany等(2015) 解析解 频率/rad·s-1 0.350 0.331 0.3484 误差/% — 5.429 0.457 -
崔灿, 蒋晗, 李映辉, 2012. 变截面梁横向振动特性半解析法. 振动与冲击, 31(14): 85-88. doi: 10.3969/j.issn.1000-3835.2012.14.018 王丕光, 黄义铭, 赵密等, 2019. 椭圆形柱体地震动水压力的简化分析方法. 震灾防御技术, 14(1): 24-34. http://zzfy.eq-j.cn/zzfyjs/ch/reader/view_abstract.aspx?flag=1&file_no=20190103&journal_id=zzfyjs 杨春宝, 王睿, 张建民, 2018. 单桩基础型近海风机系统自振频率实用计算方法. 工程力学, 35(4): 219-225. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201804025.htm 余璐庆, 吕学金, 汤旅军等, 2018. 一种改进后的海上风机动力特性理论分析方法研究. 地震工程学报, 40(2): 225-232, 251. doi: 10.3969/j.issn.1000-0844.2018.02.225 Adhikari S., Bhattacharya S., 2011. Vibrations of wind-turbines considering soil-structure interaction. Wind and Structures, 14(2): 85-112. doi: 10.12989/was.2011.14.2.085 Adhikari S., Bhattacharya S., 2012. Dynamic analysis of wind turbine towers on flexible foundations. Shock and Vibration, 19: 37-56. doi: 10.1155/2012/408493 Andersen L. V., Vahdatirad M. J., Sichani M. T., et al., 2012. Natural frequencies of wind turbines on monopile foundations in clayey soils-A probabilistic approach. Computers and Geotechnics, 43: 1-11. doi: 10.1016/j.compgeo.2012.01.010 Arany L., Bhattacharya S., Adhikari S., et al., 2015. An analytical model to predict the natural frequency of offshore wind turbines on three-spring flexible foundations using two different beam models. Soil Dynamics and Earthquake Engineering, 74: 40-45. doi: 10.1016/j.soildyn.2015.03.007 Bhattacharya S., Adhikari S., 2011. Experimental validation of soil-structure interaction of offshore wind turbines. Soil Dynamics and Earthquake Engineering, 31(5-6): 805-816. doi: 10.1016/j.soildyn.2011.01.004 Bush E., Manuel L., 2009. Foundation models for offshore wind turbines. In: Proceedings of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Orlando, Florida: AIAA. Chiou J. S., Hung W. Y., Lee Y. T., et al., 2020. Combined dynamic structure-pile-soil interaction analysis considering inertial and kinematic effects. Computers and Geotechnics, 125: 103671. doi: 10.1016/j.compgeo.2020.103671 Jonkman J., Butterfield S., Musial W., et al., 2009. Definition of a 5-MW reference wind turbine for offshore system development. Golden, CO: National Renewable Energy Lab. (NREL), 75. Veritas DN., 2002. Guidelines for design of wind turbines. 2nd ed. Copenhagen: DNV/Risoø. Van der Tempel J., Molenaar D. P., 2002. Wind turbine structural dynamics-a review of the principles for modern power generation, onshore and offshore. Wind Engineering, 26(4): 211-222. doi: 10.1260/030952402321039412 Wang P. G., Zhao M., Du X. L., et al., 2018a. Wind, wave and earthquake responses of offshore wind turbine on monopile foundation in clay. Soil Dynamics and Earthquake Engineering, 113: 47-57. doi: 10.1016/j.soildyn.2018.04.028 Wang P. G., Zhao M., Du X. L., 2018b. Analytical solution and simplified formula for earthquake induced hydrodynamic pressure on elliptical hollow cylinders in water. Ocean Engineering, 148: 149-160. doi: 10.1016/j.oceaneng.2017.11.019 Wang P. G., Zhao M., Du X. L., et al., 2018c. Simplified evaluation of earthquake-induced hydrodynamic pressure on circular tapered cylinders surrounded by water. Ocean Engineering, 164: 105-113. doi: 10.1016/j.oceaneng.2018.06.048 Wang P. G., Zhao M., Du X. L., et al., 2019. A simple added mass model for simulating elliptical cylinder vibrating in water under earthquake action. Ocean Engineering, 179: 351-360. doi: 10.1016/j.oceaneng.2019.02.046 Wang X. F., Zeng X. W., Li J. L., et al., 2018d. A review on recent advancements of substructures for offshore wind turbines. Energy Conversion and Management, 158: 103-119. doi: 10.1016/j.enconman.2017.12.061 Zuo H. R., Bi K. M., Hao H., 2018. Dynamic analyses of operating offshore wind turbines including soil-structure interaction. Engineering Structures, 157: 42-62. doi: 10.1016/j.engstruct.2017.12.001