Research on Influence of Moving Load on Dynamic Response of Bridges under Different Moving Load Values and Different Moving Speeds——Taking Cracked Prestressed Concrete Simply Supported Beam as An Example
-
摘要: 混凝土桥梁在工作过程中会产生裂缝,为分析移动荷载对开裂混凝土桥梁结构刚度的影响,对开裂梁动力响应进行分析。建立简支T梁桥有限元模型,并将移动荷载施加至有限元模型中。根据简支T梁桥破坏横向分布位置和强度的不同,研究不同工况下各梁荷载横向分布及不同移动速度对裂缝扩展宽度的影响。结果表明,数值模拟结果能较好地验证计算模型的准确性;在较大的移动荷载作用下,混凝土开裂,导致结构刚度减小、位移增大;随着移动荷载和速度的增加,开裂时间增加,结构刚度降低,持续时间增加,位移增大,使结构响应呈现明显非线性。Abstract: Concrete bridges may have cracks during the working process. In order to analyze the effect of moving loads on the structural stiffness of concrete bridges with cracks, the dynamic response of cracked beams during moving loads is analyzed. A finite element model of a simply supported T-beam bridge is established, and a motion load is applied to the finite element model. According to the different locations and strengths of the transverse damage distribution of the simply supported T-beam bridge, the transverse distribution of the load of each beam under different working conditions and the influence of different moving speeds on the crack propagation width were studied. The results show that the simulation results can well verify the accuracy of the simulation model; under large moving loads, concrete cracks will open, resulting in a decrease in structural stiffness and an increase in structural displacement; with the increase of the motion load value and velocity, the crack opening time will be longer, the structural stiffness will be reduced, the duration will be longer, and the increase in displacement will be greater, which makes the structural response appear significantly non-linear.
-
Key words:
- Moving load /
- Concrete bridge /
- Dynamic response /
- Simply supported beam
-
表 1 破坏编号
Table 1. Damage number
破坏形式 横向连接破坏位置 A B C D ZF Ⅰ-1 Ⅱ-1 Ⅲ-1 Ⅳ-1 HL Ⅰ-2 Ⅱ-2 Ⅲ-2 Ⅳ-2 ZF+HL Ⅰ-3 Ⅱ-3 Ⅲ-3 Ⅳ-3 -
陈代海, 李整, 刘琼等, 2017.公路桥梁2种车桥耦合振动分析方法的对比研究.铁道科学与工程学报, 14(7): 1449-1456. doi: 10.3969/j.issn.1672-7029.2017.07.015 邓露, 屈夏霞, 王维, 2017.考虑车桥耦合振动的钢梁桥腹板间隙的疲劳分析.中外公路, 37(4): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201704021.htm 经薇, 李松, 李强等, 2017.多车车桥耦合振动特性研究.科学技术与工程, 17(6): 111-116. doi: 10.3969/j.issn.1671-1815.2017.06.019 刘宏伟, 2019.大跨度预应力混凝土桥梁裂缝加固监测仿真.计算机仿真, 36(2): 400-403, 457. doi: 10.3969/j.issn.1006-9348.2019.02.085 龙关旭, 刘修平, 唐龙龙等, 2018.混凝土桥梁承载力综合评价体系研究.中国安全科学学报, 28(10): 162-168. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201810027.htm 王帆, 吴红林, 2017.横梁效应对车-桥耦合振动的影响研究.重庆交通大学学报(自然科学版), 36(4): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201704002.htm 朱劲松, 李俊驰, 2017.基于DVV算法的车桥耦合振动响应非线性规律研究.合肥工业大学学报(自然科学版), 40(10): 1376-1381, 1415. doi: 10.3969/j.issn.1003-5060.2017.10.015 George R. C., Posey J., Gupta A., et al., 2017. Damage detection in railway bridges under moving train load. In: Barthorpe R., Platz R., Lopez I., et al., eds., Model Validation and Uncertainty Quantification, Volume 3. Cham: Springer, 349-354. Kim J., Lynch J. P., Lee J. J., et al., 2011. Monitoring of vehicle-bridge interaction using mobile and static wireless sensor networks. In: Proceedings of the SPIE 7981, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2011. San Diego: SPIE, 79811J. Kong X., Cai C. S., Kong B., 2015. Damage detection based on transmissibility of a vehicle and bridge coupled system. Journal of Engineering Mechanics, 141(1): 04014102. http://www.researchgate.net/publication/270435474_Damage_Detection_Based_on_Transmissibility_of_a_Vehicle_and_Bridge_Coupled_System Law S. S., Li J., 2008. Condition assessment of a bridge structure under moving vehicle load including uncertainties. In: Proceedings of Eleventh East Asia-Pacific Conference on Structural Engineering & Construction. Taipei, China: National Taiwan University.