Analysis of Geochemical Characteristics of Soil Gas in the Tangshan Fault
-
摘要: 由于唐山断裂带土壤气地球化学研究成果相对较少,因此于2017—2018年分3期对唐山断裂带5条分支断裂土壤气浓度(包括Rn、Hg、CO2)和通量(包括Rn、Hg)进行测量,利用土壤气浓度平均值+2倍均方差的方法确定每条断裂异常限。分析结果表明,唐山-古冶断裂和唐山断裂土壤气浓度及通量出现高值异常;2017—2018年ML1.0以上地震多集中在唐山断裂和唐山-古冶断裂,与土壤气异常分布有较好的相关性;土壤气地球化学空间变化特征能反映断裂带的分段活动性。Abstract: In view of the relatively few achievements of soil gas geochemistry in Tangshan fault zone, soil gas (Rn, Hg, CO2) concentration and flux (Rn, Hg) were measured in five faults of Tangshan fault zone during 2017-2018, and the anomaly limits were determined by using the average value of soil gas concentration+2 times mean square deviation. The results show that the soil gas concentration and flux in Tangshan-Guye fault and tangshan fault are abnormal.From 2017 to 2018, earthquakes with magnitude ML1.0 and above are mostly concentrated in the Tangshan fault and the Tangshan-Guye fault, which had a good correlation with the abnormal distribution of soil gas. The results show that the spatial variation characteristics of soil gas geochemistry can reflect the sectional activity of the fault zone.
-
Key words:
- Soil gas /
- Geochemistry /
- Tangshan-Guye fault /
- Tangshan fault
-
图 1 唐山断裂带地质构造图(尤惠川等,2002;尹宝军,2010)
Figure 1. Tectonic map of the Tangshan fault zone (based on You et.al., 2002; Yin et al., 2010)
表 1 唐山断裂带土壤气浓度测量结果
Table 1. The result of soil gas concentrations in the Tangshan fault zone
剖面 气体组分 时间/年-月 最小值 最大值 平均值 3期平均值 异常下限 徐庄子 Rn/kBq·m-3 2017-10 1.00 26.86 12.18 12.66 28.27 2018-04 1.18 23.90 10.81 2018-10 4.19 29.10 14.98 Hg/ng·m-3 2017-10 5.00 55.00 18.00 13.00 29.00 2018-04 3.00 30.00 10.00 2018-10 3.00 38.00 12.00 CO2/% 2017-10 0.00 4.40 0.82 1.04 1.72 2018-04 0.32 1.66 1.10 2018-10 0.35 3.41 1.21 巍峰山 Rn/kBq·m-3 2017-10 4.11 25.60 12.34 11.45 33.56 2018-04 2.05 22.11 11.27 2018-10 5.21 17.90 10.75 Hg/ng·m-3 2017-10 3.00 28.00 11.00 13.00 26.00 2018-04 3.00 60.00 15.00 2018-10 7.00 57.00 14.00 CO2/% 2017-10 0.00 0.85 0.39 0.52 1.57 2018-04 0.15 1.12 0.56 2018-10 0.23 1.31 0.62 四王庄 Rn/kBq·m-3 2017-10 1.38 16.59 8.80 9.31 33.58 2018-04 1.00 19.26 8.00 2018-10 1.54 19.19 11.14 Hg/ng·m-3 2017-10 5.00 18.00 10.00 15.00 14.00 2018-04 7.00 54.00 18.00 2018-10 6.00 32.00 17.00 CO2/% 2017-10 0.00 0.43 0.22 0.77 3.45 2018-04 0.12 2.22 0.55 2018-10 0.37 3.02 1.55 孩儿屯 Rn/kBq·m-3 2017-10 1.34 8.98 4.18 4.90 8.02 2018-04 1.00 15.52 6.34 2018-10 2.53 6.20 4.17 Hg/ng·m-3 2017-10 6.00 38.00 12.00 16.00 35.00 2018-04 4.00 45.00 18.00 2018-10 7.00 36.00 18.00 CO2/% 2017-10 0.38 4.86 1.71 0.99 2.07 2018-04 0.04 3.24 0.72 2018-10 0.34 1.53 0.55 重广庵 Rn/kBq·m-3 2017-10 3.29 19.18 8.62 9.11 19.36 2018-04 4.35 24.86 11.21 2018-10 1.39 18.04 7.50 Hg/ng·m-3 2017-10 3.00 11.00 6.00 12.00 28.00 2018-04 7.00 19.00 11.00 2018-10 5.00 38.00 18.00 CO2/% 2017-10 0.68 2.45 1.22 1.04 2.32 2018-04 0.26 1.43 0.59 2018-10 0.30 2.48 1.30 表 2 唐山断裂带土壤气Rn和Hg通量测量结果
Table 2. The result of flux for Rn and Hg in the Tangshan fault zone
组分 时间 徐庄子 巍峰山 四王庄 孩儿屯 重广庵 Rn/mBq·m-2·s-1 2017-10 3.70 6.40 1.70 1.60 11.90 2018-04 — — 0.60 0.50 0.70 2018-10 1.30 1.40 1.80 0.70 — Hg/ng·m-2·h-1 2017-10 0.10 — 1.40 0.10 0.02 2018-04 — — 0.60 15.60 0.70 2018-10 0.60 — — — 0.40 -
侯彦珍, 王永才, 张根深, 1994.土壤气氡测量影响因素的初步研究.华北地震科学, 12(2):55-59. 李传友, 汪一鹏, 王志才, 2007.中国东部城市地区隐伏断裂上断点与最新活动时代关系的初步分析--以邢台、唐山地震区为例.地震地质, 29(2):431-445. http://www.cnki.com.cn/Article/CJFDTotal-DZDZ200702020.htm 李轶群, 王健, 2008.唐山余震区中小地震震源机制解分区特征的初步研究.中国地震, 24(2):150-158. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdz200802007 刘保金, 曲国胜, 孙铭心等, 2011.唐山地震区地壳结构和构造:深地震反射剖面结果.地震地质, 33(4):901-912. 孟广魁, 何开明, 班铁等, 1997.氡、汞测量用于断裂活动性和分段的研究.中国地震, 13(1):43-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700698747 孟庆筱, 王太松, 吕健等, 2014.唐山断裂带三维构造应力场的数值模拟.大地测量与地球动力学, 34(1):38-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz201401009 彭远黔, 孟立朋, 2017.河北地震构造特征.石家庄:河北人民出版社. 盛艳蕊, 张子广, 周晓成等, 2015.新保安-沙城断裂带土壤气地球化学特征分析.地震, 35(4):90-98. http://www.cnki.com.cn/Article/CJFDTotal-DIZN201504010.htm 王椿镛, 段永红, 吴庆举等, 2016.华北强烈地震深部构造环境的探测与研究.地震学报, 38(4):511-549. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhen201604002 王荔娟, 胡恭任, 2007.土壤/沉积物中汞污染地球化学及污染防治措施研究.岩石矿物学杂志, 26(5):453-461. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz200705009 吴婷婷, 王明猛, 陈旭锋等, 2017.唐山陡河水库沉积物汞的分布、来源及污染评价.环境科学, 38(3):979-986. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201703015 熊定国, 廖激, 1994.四川省环境中的汞.四川环境, (1):46-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400390209 徐杰, 宋长青, 楚全芝, 1998.张家口-蓬莱断裂带地震构造特征的初步探讨.地震地质, 20(2):146-154. http://www.cqvip.com/Main/Detail.aspx?id=3044810 杨江, 李营, 陈志等, 2017.唐山断裂带土壤气Rn和CO2地球化学特征及其与构造活动.中国矿物岩石地球化学学会第九次全国会员代表大会暨第16届学术年会文集. 杨歧焱, 吴庆举, 盛艳蕊等, 2018.张渤地震带及邻区近震体波成像及孕震环境分析.地球物理学报, 61(8):3251-3262. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201808013 杨雅琼, 王晓山, 万永革等, 2016.由震源机制解推断唐山地震序列发震断层的分段特征.地震学报, 38(4):632-643. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhen201604009 尹宝军, 2010.唐山井地下水动态特征研究.北京: 中国地震局地球物理研究所. 尤惠川, 徐锡伟, 吴建平等, 2002.唐山地震深浅构造关系研究.地震地质, 24(4):571-582. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz200204012 赵建明, 李营, 陈志等, 2018.蔚县-广灵断裂和口泉断裂气体排放和断裂活动性关系.地震地质, 40(6):1402-1416. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz201806015 Al-Hilal M., Al-Ali A., 2010. The role of soil gas radon survey in exploring unknown subsurface faults at Afamia B dam, Syria.Radiation Measurements, 45(2): 219-224. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=905e0ad32c1231293daa5748c07a4612 Ciotoli G., Lombardi S., Annunziatellis A., 2007. Geostatistical analysis of soil gas data in a high seismic intermontane basin: Fucino Plain, central Italy. Journal of Geophysical Research Atmospheres, 112(112): 2637-2655. doi: 10.1029/2005JB004044/full Du J. G., Si X. Y., Chen Y. X., et al., 2008. Geo-chemical anomalies connected with great earthquakes in China. Geo-chemistry Research Advances. Geochemistry Research Advances: 1-37. Han X., Li Y., Du J. G., et al., 2014. Rn and CO2 geochemistry of soil gas across the active fault zones in the capital area of China. Natural Hazards and Earth System Sciences, 14: 2803-2815. http://adsabs.harvard.edu/abs/2014NHESD...2.1729H Huang J. L., Zhao D. P., 2009. Seismic imaging of the crust and upper mantle under Beijing and surrounding regions. Physics of the Earth and Planetary Interiors, 173(3-4): 330-348. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=62ee730355c6b056d36d657a0e910f7c Irwin W. P., Barnes I., 1980. Tectonic relations of CO2 discharges and earthquakes. Journal of Geophysical Research Atmospheres, 85: 3115-3121. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/JB085iB06p03115 Jong E. D., Acton D. F., Kozak L. M., 1994. Naturally occurring gamma-emitting isotopes, radon release and properties of parent materials of Saskatchewan soils. Canadian Journal of Soil Science, 74(1): 47-53. http://europepmc.org/abstract/AGR/IND20406988 Li Y., Du J. G., Wang X., et al., 2013. Spatial variations of soil gas geochemistry in the Tangshan area of Northern China. Terrestrial Atmospheric and Oceanic Sciences, 24(3): 323-332. http://www.researchgate.net/publication/273680367_Spatial_Variations_of_Soil_Gas_Geochemistry_in_the_Tangshan_Area_of_Northern_China Lombardi S., Voltattorni N., 2010. Rn, He and CO2 soil gas geochemistry for the study of active and inactive faults. Applied Geochemistry, 25(8):1206-1220. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=184d2f611fcba82f232562e2fda8c2bb Ma M., Wang D. Y., Sun R. G., et al., 2013. Gaseous mercury emissions from subtropical forested and open field soils in a national nature reserve, southwest China. Atmospheric Environment, 64: 116-123. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fdda626805c3a81e09321c724c05d9df Pizzino L., Burrato P., Quattrocchi F., et al., 2004. Geochemical signatures of large active faults: The example of the 5 February 1783, Calabrian earthquake(southern Italy) Journal of Seismology, 8(3): 363-380. Shedlock K. M., Baranowski J., Xiao W. W., et al., 1987. The Tangshan aftershock sequence. Journal of Geophysical Research Atmospheres, 92(B3): 2791-2803. doi: 10.1029/JB092iB03p02791/pdf Wang X., Li Y., Du J. G., et al., 2013. Correlations between radon in soil gas and the activity of seismogenic faults in the Tangshan area, North China. Radiation Measurements, 60: 8-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7b8755abd407038d50f5c3e10ca5325a Yang T. F., Chou C. Y., Chen C. H., et al., 2003. Exhalation of radon and its carrier gases in SW Taiwan. Radiation Measurements, 36(1): 425-429. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=11cd73a59c39d800ad6cd487f9adbd8e Zhou X. C., Du J. G., Chen Z., et al., 2010. Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan Ms8.0 earthquake, southwestern China. Geochemical Transactions, 11(1): 5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000000619376