Study on Seismic Performance of Reinforced Structures of Arch Kiln Dwellings
-
摘要: 碹窑作为张家口市特有的建筑,具有独特的结构形式。碹窑窑鼻与外墙为夯土结构,窑脸与窑顶为土坯结构,不同部位之间的构造差异使得碹窑整体性能削弱较大,无法抵御地震灾害。针对碹窑民居的结构缺陷,提出螺栓连接、预应力钢绞线拉接、窑顶钢板条支撑等加固措施,用以提高结构抗震性能。本文采用爆破地震模拟自然地震,分别对加固前后的碹窑进行原位爆破。试验结果表明:未加固的碹窑在地震作用下,土坯窑顶与夯土窑鼻加速度差异较大,二者临界部位为结构薄弱部位;针对碹窑结构体系缺陷提出的加固方法可有效提高其抗震性能;随着爆破位置逐渐靠近碹窑民居,爆破荷载逐渐强烈,加固结构对于土坯窑顶与夯土窑鼻之间的协调作用逐渐减弱。Abstract: As unique buildings in Zhangjiakou,arch kiln dwellings have unique structural forms. The arch kiln dwellings nose and exterior walls are earth-rammed structure. The arch kiln dwellings face and roof are adobe structure. The structural differences between different parts make the overall performance of arch kiln dwellings weakened greatly,and make arch kiln dwellings unable to resist earthquake damage. In view of the structural defect of arch kiln dwellings,some reinforcement measures such as bolts connection,pre-stressed stranded wires connection,steel strips support were proposed to improve the seismic performance of dwellings. Blasting earthquake was used to simulate natural earthquake in this paper,and in-situ blasting was performed on arch kiln dwellings before and after reinforcement. The results show that there is a significant difference in acceleration between adobe roof and earth-rammed nose of unreinforced arch kiln dwellings under seismic load,and the critical part is the weak part. The reinforcement method can effectively improve the seismic performance of dwellings. When the blasting position is gradually close to the arch kiln dwellings,the blasting load is gradually increased,and the coordinating effect of adobe roof and earth-rammed nose of dwellings gradually weakens.
-
Key words:
- Arch kiln /
- Structural reinforcement /
- Blasting earthquake /
- In-situ test /
- Seismic performance
-
表 1 爆破点位置及爆破药量
Table 1. Location of blasting points and amount of explosive
爆破点号 1 2 3 4 5 6 7 爆破点深度/m 1.60 1.60 1.60 1.60 1.60 1.60 1.60 爆破点与立面距离/m 2.00 2.00 2.00 3.00 3.00 3.00 7.20 药量/kg 1.00 1.00 1.00 1.00 1.00 1.00 1.00 表 2 加固构件参数
Table 2. Parameters of reinforced components
构件名称 尺寸/mm 构件特征 数量 矩形钢板 长×宽×厚:1500×200×6 左右两端各冲孔1列2排 2块 A型L形钢板 边长×边长×宽×厚:250×250×100×6 两边中部各冲孔1列1排,端部各冲孔1列2排 10块 B型L形钢板 边长×边长×宽×厚:250×250×200×6 两边中部各冲孔1列2排,端部各冲孔1列4排 10块 钢板条 宽×厚:100×30 — 70m 钢绞线 截面直径:ϕ4 — 200m A型穿墙螺栓 长度×截面直径:600×ϕ10 — 16根 B型穿墙螺栓 长度×截面直径:300×ϕ10 — 8根 长螺丝钉 长度×截面直径:200×ϕ15 — 32根 -
阿肯江·托呼提, 秦拥军, 亓国庆, 2008.木柱梁-土坯组合墙体非线性数值计算分析.重庆大学学报, (11):1277-1284. 陈宝魁, 史雨萱, 熊进刚等, 2018.江西省既有生土结构房屋抗震性能及加固方法.世界地震工程, 34(3):46-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjdzgc201803005 陈汉清, 阿肯江·托呼提, 2009.基于ANSYS的素土坯墙体抗震性能影响因素分析.实验室研究与探索, 28(10):23-25, 54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysyjyts200910008 段美芳, 陆丽娜, 李莹甄等, 2018.张家口-渤海断裂带西段及中西段b值时空扫描.震灾防御技术, 13(1):138-148. http://zzfy.eq-j.cn/zzfyjs/ch/reader/view_abstract.aspx?flag=1&file_no=20180112&journal_id=zzfyjs 郭平功, 2016.纵向地震峰值加速度对生土窑居稳定性的影响.工程抗震与加固改造, 38(4):133-138. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gckz201604019 胡晓锋, 张风亮, 薛建阳等, 2019.黄土窑洞病害分析及加固技术.工业建筑, 49(1):6-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gyjz201901002 贾晗曦, 林均岐, 刘金龙, 2019.建筑结构地震易损性分析研究综述.震灾防御技术, 14(1):42-51. http://zzfy.eq-j.cn/zzfyjs/ch/reader/view_abstract.aspx?flag=1&file_no=20190105&journal_id=zzfyjs 尚守平, 余俊, 王海东等, 2007.爆破模拟地震研究.铁道科学与工程学报, (1):24-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cstdxyxb200701005 宋建学, 张珊珊, 2018.砖柱与生土墙混合结构传统民居墙体加固技术研究.工程抗震与加固改造, 40(1):104-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gckz201801018 孙满利, 王旭东, 李最雄等, 2006.木质锚杆加固生土遗址研究.岩土工程学报, (12):2156-2159. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb200612021 陶忠, 徐红杰, 陈志寿, 2011.土坯中添加松针对其力学性能影响的试验研究.世界地震工程, 27(3):180-186. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjdzgc201103028 王毅红, 李丽, 王冲锋等, 2010.村镇既有生土结构房屋抗震性能现状分析.土木工程学报, 43(S1):462-467. http://www.cnki.com.cn/Article/CJFDTotal-TMGC2010S1080.htm 于文, 葛学礼, 朱立新, 2007.新疆喀什老城区生土房屋模型振动台试验研究.工程抗震与加固改造, (3):24-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gckz200703006 贠永峰, 张方, 2014.爆破模拟地震动下框架抗震性能试验分析.工程爆破, 20(2):21-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcbp201402006 周铁钢, 段文强, 穆钧等, 2013.全国生土农房现状调查与抗震性能统计分析.西安建筑科技大学学报(自然科学版), 45(4):487-492. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xajzkjdx201304005 周铁钢, 杨华, 胡昕, 2009.石膏-土坯墙民居抗震性能试验研究.世界地震工程, 25(3):130-134. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjdzgc200903023 周铁钢, 袁一鸣, 赵祥, 2018.配筋砂浆带加固土坯墙体的抗震性能研究与实践.建筑结构学报, 39(11):58-64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jzjgxb201811007 周铁钢, 朱瑞召, 朱立新等, 2016a.土坯围护墙-木结构民居抗震加固振动台试验研究.西安建筑科技大学学报(自然科学版), 48(3):346-350, 370. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xajzkjdx201603007 周铁钢, 朱瑞召, 朱立新等, 2016b.土坯墙承重民居抗震加固振动台试验研究.防灾减灾工程学报, 36(2):181-187. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzxk201602003 朱伯龙, 吴明舜, 蒋志贤, 1984.砖墙用钢筋网水泥砂浆面层加固的抗震能力研究.地震工程与工程振动, (1):70-81. http://www.cnki.com.cn/Article/CJFDTotal-DGGC198401006.htm 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2016.GB 50011-2010建筑抗震设计规范[2016版]北京: 中国建筑工业出版社. Saman Z., Bahurst R. J., 2009. INfluence of constitutive model on numerical simulation of eps seismic buffer shaking table tests. Geotextiles and Geomembranes, 2 (27):308-312. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3667275247662f2ea14a398d3e713a57 Yamin L. E., Phillips C. A., Reyes J. C., et al., 2004. Seismic behavior and rehabilitation alternatives for adobe and rammed earth building. 13th World Conference on Earthquake Engineering. Bccanada, Vancouver.