• ISSN 1673-5722
  • CN 11-5429/P

锈蚀钢筋混凝土框架中节点抗剪强度研究

邢国华 武名阳 丁远泽 常召群 王志萌

邢国华, 武名阳, 丁远泽, 常召群, 王志萌. 锈蚀钢筋混凝土框架中节点抗剪强度研究[J]. 震灾防御技术, 2020, 15(1): 33-42. doi: 10.11899/zzfy20200104
引用本文: 邢国华, 武名阳, 丁远泽, 常召群, 王志萌. 锈蚀钢筋混凝土框架中节点抗剪强度研究[J]. 震灾防御技术, 2020, 15(1): 33-42. doi: 10.11899/zzfy20200104
Xing Guohua, Wu Mingyang, Ding Yuanze, Chang Zhaoqun, Wang Zhimeng. Research on Shear Strength of Interior Joints in Corroded Reinforced Concrete Frame[J]. Technology for Earthquake Disaster Prevention, 2020, 15(1): 33-42. doi: 10.11899/zzfy20200104
Citation: Xing Guohua, Wu Mingyang, Ding Yuanze, Chang Zhaoqun, Wang Zhimeng. Research on Shear Strength of Interior Joints in Corroded Reinforced Concrete Frame[J]. Technology for Earthquake Disaster Prevention, 2020, 15(1): 33-42. doi: 10.11899/zzfy20200104

锈蚀钢筋混凝土框架中节点抗剪强度研究

doi: 10.11899/zzfy20200104
基金项目: 

新疆自治区自然科学基金 2018D01C038

详细信息
    作者简介:

    邢国华, 男, 生于1983年。教授, 博士。主要从事混凝土结构抗震方面的研究。E-mail:ghxing@chd.edu.cn

Research on Shear Strength of Interior Joints in Corroded Reinforced Concrete Frame

  • 摘要: 随着服役时间的增长,侵蚀环境下钢筋混凝土框架节点因钢筋发生不同程度的锈蚀而造成承载性能下降,严重影响建筑结构的安全使用。本文在已有钢筋混凝土框架节点抗剪强度理论模型的基础上,考虑钢筋锈蚀对框架节点受力性能的影响,建立锈蚀钢筋混凝土框架中节点受剪承载力计算公式。通过11组锈蚀钢筋混凝土节点试验数据,对建议理论模型进行验证。研究结果表明,锈蚀钢筋混凝土节点受剪承载力试验值与理论计算值之比的平均值为0.951,方差为0.075,二者吻合较好,本文建议的计算方法可用于锈蚀钢筋混凝土框架中节点承载力分析。
  • 图  1  锈蚀钢筋截面变化

    Figure  1.  Section change of the corroded steel bars

    图  2  节点桁架模型

    Figure  2.  Truss model of concrete joints

    图  3  锈蚀节点有效抗剪截面

    Figure  3.  Effective shear section of corroded joints

    图  4  锈蚀节点抗剪强度试验值与计算值之比

    Figure  4.  Ratios between test values and calculated values of shear strength of corroded joints

    图  5  锈蚀节点抗剪强度试验值-纵筋锈蚀率变化曲线

    Figure  5.  Curve of shear strength of corroded joints and corrosion ratio of longitudinal steel bars

    表  1  锈蚀节点抗剪承载力试验值与计算值对比

    Table  1.   Comparison of shear strength between test values and calculation values of corroded joints

    文献 试件 截面尺寸(b×h)/mm 轴压比 节点配筋 Vt/kN 节点锈蚀率ηs/% Vp
    /kN
    Vt
    /Vp
    梁筋 柱筋 箍筋 梁筋 柱筋 箍筋
    郑山锁等(2015) JD-1 150×250 200×200 0.3 2×312 2×316 ϕ6@60 54.3 0.00 0.00 0.00 63.0 0.862
    JD-2 150×250 200×200 0.3 2×312 2×316 ϕ6@60 50.3 1.98 2.23 3.72 52.9 0.951
    JD-3 150×250 200×200 0.3 2×312 2×316 ϕ6@60 46.8 2.76 3.13 6.38 48.3 0.969
    JD-4 150×250 200×200 0.3 2×312 2×316 ϕ6@60 42.7 4.36 5.02 10.57 41.6 1.026
    JD-5 150×250 200×200 0.1 2×312 2×316 ϕ6@60 40.6 1.92 2.34 6.41 46.7 0.869
    JD-6 150×250 200×200 0.45 2×312 2×316 ϕ6@60 47.4 2.53 3.14 6.82 47.7 0.994
    周静海等(2015) JH-1 170×300 250×250 0.2 2×220 2×220 35.4 0 0 36.6 0.967
    JH-2 170×300 250×250 0.2 2×220 2×220 32.6 2 2 33.1 0.985
    JH-3 170×300 250×250 0.2 2×220 2×220 26.7 5 5 30.3 0.881
    JH-4 170×300 250×250 0.2 2×220 2×220 24.9 10 10 26.9 0.926
    JH-5 170×300 250×250 0.2 2×220 2×220 24.8 15 15 24.1 1.029
    注:Vt为锈蚀节点抗剪承载力试验值;Vp为锈蚀节点抗剪承载力理论计算值
    下载: 导出CSV
  • 范颖芳, 周晶, 黄振国, 2002.受腐蚀混凝土构件中混凝土膨胀内应力的研究.四川建筑科学研究, 28(4):10-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scjzkxyj200204004
    贺志坚, 张兵, 张连德等, 1991.钢筋混凝土框架节点抗剪机理探讨.全国第九届混凝土结构节点与连接学术会议论文集.
    黄煜镔, 2002.混凝土脆性与力学参数的尺寸效应及其相互关系的研究.重庆: 重庆大学.
    姬永生, 袁迎曙, 宋萌等, 2011.不同锈蚀条件下混凝土内钢筋锈蚀物膨胀性能比较和机理分析.北京工业大学学报, 37(11):1677-1683. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjgydxxb201111012
    梁岩, 罗小勇, 2013.钢筋锈蚀对混凝土力学性能的影响研究.四川建筑科学研究, 39(4):108-111, 159. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scjzkxyj201304024
    任海洋, 2010.不同环境下钢筋锈蚀产物的力学性能研究.杭州: 浙江大学.
    唐九如, 1989.钢筋混凝土框架节点抗震.南京:东南大学出版社.
    王海龙, 金伟良, 孙晓燕, 2008.基于断裂力学的钢筋混凝土保护层锈胀开裂模型.水利学报, 39(7):863-869. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slxb200807015
    王海龙, 李朝红, 徐光兴, 2011.带肋钢筋与混凝土粘结性能的细观数值模拟.西南交通大学学报, 46(3):365-372. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xnjtdxxb201103002
    吴庆, 袁迎曙, 蒋建华等, 2009.锈蚀钢筋与混凝土黏结机理试验研究.中国矿业大学学报, 38(5):685-691. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb200905016
    吴元周, 吕恒林, 方忠年等, 2015.钢筋锈蚀及混凝土劣化耦合对梁构件力学性能的影响.中国矿业大学学报, 44(5):793-799. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb201505003
    张誉, 蒋利学, 2003.混凝土结构耐久性概论.上海:上海科学技术出版社.
    张仲先, 黄彩萍, 2006.柱轴力对框架外节点核心区水平抗剪能力的影响.华中科技大学学报(城市科学版), (4):20-22. http://www.cnki.com.cn/Article/CJFDTotal-WHCJ200604005.htm
    赵羽习, 2001.钢筋混凝土结构粘结性能和耐久性的研究.杭州: 浙江大学.
    郑山锁, 孙龙飞, 刘小锐等, 2015.近海大气环境下锈蚀RC框架节点抗震性能试验研究.土木工程学报, 48(12):63-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tmgcxb201512007
    中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2015.GB 50010-2010混凝土结构设计规范[2015版].北京:中国建筑工业出版社.
    周静海, 崔俊, 王凤池等, 2015.锈蚀钢筋混凝土框架节点力学性能退化研究.沈阳建筑大学学报(自然科学版), 31(4):613-620. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syjzgcxyxb201504005
    ACI 318-2014 Building code requirements for structural concrete and commentary. Farmington (MI): American Concrete Institute.
    Bazant Z. P., Yu Q., 2005. Designing against size effect on shear strength of reinforced concrete beams without stirrups. Ⅱ:Verification and calibration. ASCE Journal of Structural Engineering, 131(12):1886-1897. http://www.researchgate.net/publication/245305238_Designing_Against_Size_Effect_on_Shear_Strength_of_Reinforced_Concrete_Beams_Without_Stirrups_I._Formulation
    Eurocode 2, 2004. Design of concrete structures: Part 1-1: General rules and rules for buildings. Brussels: CEN(Committee for Standardization).
    He Z. Q., Liu Z., John M. Z., 2016. Simplified shear design of slender reinforced concrete beams with stirrups. ASCE Journal of Structural Engineering, 142(2):06015003.
    Kitayama K., Otani S., Aoyama H., 1991. Development of design criteria for RC Interior beam-column joints, design of beam-column joints for seismic resistance. SP123, ACI.
    Lee H. S., Noguchi T., Tomosawa F., 1998. FEM analysis for structural performance of deteriorated RC structures due to rebar corrosion. Proceedings of the Second International Conference on Concrete Under Severe Conditions. Tromso, Norway.
    Rangan B. V., 1991. Web crushing strength of reinforced and prestressed concrete beams. ACI Structural Journal, 88(1):12-16.
    Rodriguez J., Ortega L. M., Casal J., 1994. Corrosion of reinforcing bars and service life of reinforced concrete structures: corrosion and bond deterioration. International Conference on Concrete Across Borders. Odense, Denmark.
    Rodriguez J., Ortega L. M., Casal J., 1997. Load carrying capacity of concrete structures with corroded reinforcement. Construction and Building Materials, 11(4):239-248. http://www.onacademic.com/detail/journal_1000034611335410_62ee.html
    Tureyen A. K., Frosch R. J., 2003. Concrete shear strength:another perspective. ACI Structural Journal, 100(5):609-615. http://www.researchgate.net/publication/279601234_Concrete_Shear_Strength_Another_Perspective
    Vecchio F. J., Collins M. P., 1986. The modified compression-field theory for reinforced concrete elements subjected to shear. ACI Structural Journal, 83(2):219-231. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5d1c329ad6a82b2a75277e3c0a1d4d18
    Walraven J., Belletti B., Esposito R., 2012. Shear capacity of normal, lightweight, and high-strength concrete beams according to Model Code 2010. Ⅰ:Experimental results versus analytical model results. ASCE Journal of Structural Engineering, 139(9):1593-1599.
    Zararis P. D., Papadakis G. C., 2001. Diagonal shear failure and size effect in RC beams without web reinforcement. ASCE Journal of Structural Engineering, 127(7):733-742. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fda0b7056285f746c39a084b0afb8a70
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  39
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-28
  • 刊出日期:  2020-03-01

目录

    /

    返回文章
    返回