Research on Shear Strength of Interior Joints in Corroded Reinforced Concrete Frame
-
摘要: 随着服役时间的增长,侵蚀环境下钢筋混凝土框架节点因钢筋发生不同程度的锈蚀而造成承载性能下降,严重影响建筑结构的安全使用。本文在已有钢筋混凝土框架节点抗剪强度理论模型的基础上,考虑钢筋锈蚀对框架节点受力性能的影响,建立锈蚀钢筋混凝土框架中节点受剪承载力计算公式。通过11组锈蚀钢筋混凝土节点试验数据,对建议理论模型进行验证。研究结果表明,锈蚀钢筋混凝土节点受剪承载力试验值与理论计算值之比的平均值为0.951,方差为0.075,二者吻合较好,本文建议的计算方法可用于锈蚀钢筋混凝土框架中节点承载力分析。Abstract: With the increasing of service time, due to the corrosion of steel bars, the bearing performance of reinforced concrete frame joints under erosion environment is reduced, which seriously affects the safety of building structures. Based on existing theoretical models of shear strength of reinforced concrete frame joints, the calculation formula of shear strength of corroded reinforced concrete frame joints was proposed by considering the effect of steel bars corrosion. The test results of 11 sets of corroded reinforced concrete joints were used to validate the suggested model. The results show that the ratios between test values and calculated values of shear strength of corroded joints is 0.951, and the variance is 0.075, which is in good agreement. The calculation method proposed in this paper can analyze the bearing capacity of corroded reinforced concrete frame joints.
-
Key words:
- Concrete structures /
- Corrosion /
- Joints /
- Shear strength /
- Coupling effect
-
表 1 锈蚀节点抗剪承载力试验值与计算值对比
Table 1. Comparison of shear strength between test values and calculation values of corroded joints
文献 试件 截面尺寸(b×h)/mm 轴压比 节点配筋 Vt/kN 节点锈蚀率ηs/% Vp
/kNVt
/Vp梁 柱 梁筋 柱筋 箍筋 梁筋 柱筋 箍筋 郑山锁等(2015) JD-1 150×250 200×200 0.3 2×3 12 2×3 16 ϕ6@60 54.3 0.00 0.00 0.00 63.0 0.862 JD-2 150×250 200×200 0.3 2×3 12 2×3 16 ϕ6@60 50.3 1.98 2.23 3.72 52.9 0.951 JD-3 150×250 200×200 0.3 2×3 12 2×3 16 ϕ6@60 46.8 2.76 3.13 6.38 48.3 0.969 JD-4 150×250 200×200 0.3 2×3 12 2×3 16 ϕ6@60 42.7 4.36 5.02 10.57 41.6 1.026 JD-5 150×250 200×200 0.1 2×3 12 2×3 16 ϕ6@60 40.6 1.92 2.34 6.41 46.7 0.869 JD-6 150×250 200×200 0.45 2×3 12 2×3 16 ϕ6@60 47.4 2.53 3.14 6.82 47.7 0.994 周静海等(2015) JH-1 170×300 250×250 0.2 2×2 20 2×2 20 — 35.4 0 0 — 36.6 0.967 JH-2 170×300 250×250 0.2 2×2 20 2×2 20 — 32.6 2 2 — 33.1 0.985 JH-3 170×300 250×250 0.2 2×2 20 2×2 20 — 26.7 5 5 — 30.3 0.881 JH-4 170×300 250×250 0.2 2×2 20 2×2 20 — 24.9 10 10 — 26.9 0.926 JH-5 170×300 250×250 0.2 2×2 20 2×2 20 — 24.8 15 15 — 24.1 1.029 注:Vt为锈蚀节点抗剪承载力试验值;Vp为锈蚀节点抗剪承载力理论计算值 -
范颖芳, 周晶, 黄振国, 2002.受腐蚀混凝土构件中混凝土膨胀内应力的研究.四川建筑科学研究, 28(4):10-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scjzkxyj200204004 贺志坚, 张兵, 张连德等, 1991.钢筋混凝土框架节点抗剪机理探讨.全国第九届混凝土结构节点与连接学术会议论文集. 黄煜镔, 2002.混凝土脆性与力学参数的尺寸效应及其相互关系的研究.重庆: 重庆大学. 姬永生, 袁迎曙, 宋萌等, 2011.不同锈蚀条件下混凝土内钢筋锈蚀物膨胀性能比较和机理分析.北京工业大学学报, 37(11):1677-1683. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjgydxxb201111012 梁岩, 罗小勇, 2013.钢筋锈蚀对混凝土力学性能的影响研究.四川建筑科学研究, 39(4):108-111, 159. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scjzkxyj201304024 任海洋, 2010.不同环境下钢筋锈蚀产物的力学性能研究.杭州: 浙江大学. 唐九如, 1989.钢筋混凝土框架节点抗震.南京:东南大学出版社. 王海龙, 金伟良, 孙晓燕, 2008.基于断裂力学的钢筋混凝土保护层锈胀开裂模型.水利学报, 39(7):863-869. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slxb200807015 王海龙, 李朝红, 徐光兴, 2011.带肋钢筋与混凝土粘结性能的细观数值模拟.西南交通大学学报, 46(3):365-372. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xnjtdxxb201103002 吴庆, 袁迎曙, 蒋建华等, 2009.锈蚀钢筋与混凝土黏结机理试验研究.中国矿业大学学报, 38(5):685-691. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb200905016 吴元周, 吕恒林, 方忠年等, 2015.钢筋锈蚀及混凝土劣化耦合对梁构件力学性能的影响.中国矿业大学学报, 44(5):793-799. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb201505003 张誉, 蒋利学, 2003.混凝土结构耐久性概论.上海:上海科学技术出版社. 张仲先, 黄彩萍, 2006.柱轴力对框架外节点核心区水平抗剪能力的影响.华中科技大学学报(城市科学版), (4):20-22. http://www.cnki.com.cn/Article/CJFDTotal-WHCJ200604005.htm 赵羽习, 2001.钢筋混凝土结构粘结性能和耐久性的研究.杭州: 浙江大学. 郑山锁, 孙龙飞, 刘小锐等, 2015.近海大气环境下锈蚀RC框架节点抗震性能试验研究.土木工程学报, 48(12):63-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tmgcxb201512007 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2015.GB 50010-2010混凝土结构设计规范[2015版].北京:中国建筑工业出版社. 周静海, 崔俊, 王凤池等, 2015.锈蚀钢筋混凝土框架节点力学性能退化研究.沈阳建筑大学学报(自然科学版), 31(4):613-620. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syjzgcxyxb201504005 ACI 318-2014 Building code requirements for structural concrete and commentary. Farmington (MI): American Concrete Institute. Bazant Z. P., Yu Q., 2005. Designing against size effect on shear strength of reinforced concrete beams without stirrups. Ⅱ:Verification and calibration. ASCE Journal of Structural Engineering, 131(12):1886-1897. http://www.researchgate.net/publication/245305238_Designing_Against_Size_Effect_on_Shear_Strength_of_Reinforced_Concrete_Beams_Without_Stirrups_I._Formulation Eurocode 2, 2004. Design of concrete structures: Part 1-1: General rules and rules for buildings. Brussels: CEN(Committee for Standardization). He Z. Q., Liu Z., John M. Z., 2016. Simplified shear design of slender reinforced concrete beams with stirrups. ASCE Journal of Structural Engineering, 142(2):06015003. Kitayama K., Otani S., Aoyama H., 1991. Development of design criteria for RC Interior beam-column joints, design of beam-column joints for seismic resistance. SP123, ACI. Lee H. S., Noguchi T., Tomosawa F., 1998. FEM analysis for structural performance of deteriorated RC structures due to rebar corrosion. Proceedings of the Second International Conference on Concrete Under Severe Conditions. Tromso, Norway. Rangan B. V., 1991. Web crushing strength of reinforced and prestressed concrete beams. ACI Structural Journal, 88(1):12-16. Rodriguez J., Ortega L. M., Casal J., 1994. Corrosion of reinforcing bars and service life of reinforced concrete structures: corrosion and bond deterioration. International Conference on Concrete Across Borders. Odense, Denmark. Rodriguez J., Ortega L. M., Casal J., 1997. Load carrying capacity of concrete structures with corroded reinforcement. Construction and Building Materials, 11(4):239-248. http://www.onacademic.com/detail/journal_1000034611335410_62ee.html Tureyen A. K., Frosch R. J., 2003. Concrete shear strength:another perspective. ACI Structural Journal, 100(5):609-615. http://www.researchgate.net/publication/279601234_Concrete_Shear_Strength_Another_Perspective Vecchio F. J., Collins M. P., 1986. The modified compression-field theory for reinforced concrete elements subjected to shear. ACI Structural Journal, 83(2):219-231. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5d1c329ad6a82b2a75277e3c0a1d4d18 Walraven J., Belletti B., Esposito R., 2012. Shear capacity of normal, lightweight, and high-strength concrete beams according to Model Code 2010. Ⅰ:Experimental results versus analytical model results. ASCE Journal of Structural Engineering, 139(9):1593-1599. Zararis P. D., Papadakis G. C., 2001. Diagonal shear failure and size effect in RC beams without web reinforcement. ASCE Journal of Structural Engineering, 127(7):733-742. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fda0b7056285f746c39a084b0afb8a70