• ISSN 1673-5722
  • CN 11-5429/P

滑动长孔螺栓摩擦阻尼器力学性能试验研究

王宇亮 崔洪军 张玉敏 谷玉珍

王宇亮, 崔洪军, 张玉敏, 谷玉珍. 滑动长孔螺栓摩擦阻尼器力学性能试验研究[J]. 震灾防御技术, 2020, 15(1): 11-20. doi: 10.11899/zzfy20200102
引用本文: 王宇亮, 崔洪军, 张玉敏, 谷玉珍. 滑动长孔螺栓摩擦阻尼器力学性能试验研究[J]. 震灾防御技术, 2020, 15(1): 11-20. doi: 10.11899/zzfy20200102
Wang Yuliang, Cui Hongjun, Zhang Yumin, Gu Yuzhen. Experimental Research on Mechanical Property of Friction Damper with Sliding Long-hole Bolt[J]. Technology for Earthquake Disaster Prevention, 2020, 15(1): 11-20. doi: 10.11899/zzfy20200102
Citation: Wang Yuliang, Cui Hongjun, Zhang Yumin, Gu Yuzhen. Experimental Research on Mechanical Property of Friction Damper with Sliding Long-hole Bolt[J]. Technology for Earthquake Disaster Prevention, 2020, 15(1): 11-20. doi: 10.11899/zzfy20200102

滑动长孔螺栓摩擦阻尼器力学性能试验研究

doi: 10.11899/zzfy20200102
基金项目: 

国家自然科学基金 51678237

详细信息
    作者简介:

    王宇亮, 男, 生于1980年。博士研究生, 副教授。主要从事结构抗震、防灾减灾方面的研究。E-mail:14522466@qq.com

    通讯作者:

    张玉敏, 女, 生于1973年。博士, 教授。E-mail:710765269@qq.com

Experimental Research on Mechanical Property of Friction Damper with Sliding Long-hole Bolt

  • 摘要: 本文在已有摩擦阻尼器的基础上,设计可应用于装配式剪力墙竖向接缝的阻尼器。通过改变摩擦材料、高强螺栓预紧力等参数,对阻尼器工作性能参数(起滑力、起滑位移、等效初始刚度等)进行对比分析。研究结果表明,当摩擦材料为黄铜板、铝板及碳纤维板时,2个受力方向的起滑力相差不大,而当摩擦材料为橡胶板时,由于橡胶自身强度较低,2个受力方向的起滑力差异较大,工作性能相对较差;4种材料起滑位移及等效初始刚度在不同预紧力下按照一定规律变化,表现出较好的工作性能。在实际应用中,应设置碟形垫片以保证预紧力的稳定,使阻尼器工作性能良好。
  • 相关研究表明2008年5月12日汶川8级地震是龙门山断裂带的中央断裂带重新活动的结果(张培震等,2008徐锡伟等,2008),从震源破裂机制上看,存在由逆断层型向走滑型转变的过程(王卫民等,2008)。在研究中人们还发现汶川地震前,在位于大震初始破裂位置的紫坪铺水库附近发生了一系列密集的小震活动(胡先明等,2010卢显等,2010程万正等,2010),分别称之为水磨震群、深溪沟震群和都江堰震群(马文涛等,2011),它们与汶川地震的关系值得研究。胡先明等(2009)利用PS垂直分量振幅比资料测定了紫坪铺水库区2004年8月至2007年12月间262次小震震源机制参数,得到了水库蓄水使走滑断层活动增多和小震震源机制解节面优势方向与断层走向展布一致的结论。张永久等(2010)运用PS振幅比法计算了紫坪铺水库区及周边486次大于ML 1.6地震的震源机制,得到了水库水域范围的地震活动受到了紫坪铺水库蓄水的影响,而外围稍远区域的断层错动性质和应力场变化则反映了汶川8级地震前的增强信息结论。

    特别是2008年2—4月期间,在位于汶川大震初始破裂点的都江堰附近发生了一系列的小震活动,它们的震源机制及活动性对于研究汶川8级地震的孕育、发生及发展过程至关重要。本文通过解剖一系列小震活动的“时、空、强”和震源机制解特点,从力学机制上深刻理解大地震孕育、发生及发展过程。

    地震的震源机制解是指震源区在地震发生时的发震应力、方向和断层错动方式的力学过程,是由地震产生并被许多测震台站记录到的地震波形分析结果,是所得到的地震断层面及与该断层面垂直的辅助面的参数、发震应力场和其它有关参数的总和。由于地震的震源机制描述了震源的性质及其破裂过程,因此及时确定地震的震源机制对于地震本身的研究、孕震机理的解释及震后应力分布的描述,具有十分重要的意义。

    利用Zhao等(1994)等提出的CAP(Cut and Paste)方法,把波形记录分割为P波部分(Pnl)和面波部分(Snl),分别赋予不同的权重,通过格点搜索的方法进行地震震源机制的反演。CAP反演方法中设u(t)是地震台站记录到的去除仪器响应后的地震波形,S(t)是相对应的理论计算出的波形,则有如下等式:

    $$ {S_j}(t) = {M_o}\sum\limits_{i = 1}^3 {{A_{ij}}} (\Phi {\rm{ - }}\theta, \delta, \lambda){G_{ij}}(h, \Delta, t) $$ (1)

    式中,ij分别对应垂向、径向和切向分量,取1、2、3,Gij是对应各个方向的格林函数,Aij是辐射的衰减系数,Mo是地震的矩张量,$ \mathit{\Phi} $、$\mathit{\Delta} $、t是地震的方位角、震中距、走时。需要反演得到的地震深度h、断层走向$\theta $、倾角$ \delta $、滑移角$\lambda $可以通过解式(2)得到:

    $$ u(t) = S(t) $$ (2)

    为此我们可以使用格点搜索法,搜索可能的震源深度、方位角、滑移角、倾角,同时给出误差函数作为测量标准,从而得到最佳震源机制解。

    在反演时使用的波形为近震波形,而近震波形受地壳横向各向异性的影响较明显。因此,越来越多的研究人员采用频率-波数(f-k)方法(Zhu等,2002)来计算台站各处的格林函数。另外,在波形反演过程中,反演结果容易受到波形中较强部分的影响。对P波部分(Pnl)和面波部分(Snl)的3分量共5部分(Pnl不存在切向分量)给定不同的权重进行反演,可充分考虑各部分波形对反演结果的贡献,如选择格点搜索的方法,选取(3)式的误差测量函数:

    $$ e = \parallel u(t) - S(t)\parallel $$ (3)

    通过格点搜索方法在适当的范围内循环震源深度、方位角、倾角、滑移角,得到相对误差最小时的震源机制解和震源深度。

    CAP法应用十分广泛,吕坚等(2008)使用CAP方法分析九江-瑞昌MS 5.7、MS 4.8地震震源机制,并得到主震和强余震发震构造等有关结论;李铂等(2016)使用CAP方法反演了乳山震群ML 3.0以上地震震源机制解,并推测出该区域存在一条或者多条隐伏断裂;郑培玲等(2017)使用CAP方法得到河南范县ML 4.2地震震源机制,并得出此地震与聊兰断裂活动有关的结论。近年来CAP方法不但应用于中强地震,在中小地震中的应用也越来越广泛,呈现出在更小地震中应用的发展趋势。但人们也对小地震使用CAP法存在着疑虑,认为4级及以上地震波形具有较大的信噪比,能够获得比较可靠的震源机制解结果。

    人们研究4级以上震源机制解所使用的地震台网台间距一般在100—200km或更远,而我们使用的紫坪铺水库地震专用台网的台间距在10km左右。从选取的紫坪铺台站都江堰震群的资料看,ML 2.7的200802142312事件被BAY台站记录到,其震中距为12.8km,最大振幅为17425;而相对于ML 4.0的200707310735事件,被震中距为170km的BAY台站记录到,它的最大振幅为21927。可见远台接收到的中强震级与近台接收到的小微震在能量振幅量级上是相当的,即两者所使用的地震数据的信噪比是相当的,故可以用CAP方法反演都江堰震群的小震震源机制。

    紫坪铺小台网自建成以来获得了良好的宽频带数字地震记录,可以有效地拾取地震波形等资料。本次研究选用紫坪铺水库的7个专用台站(图 1),台站基本情况见表 1

    图 1  台站与水库位置分布图
    Figure 1.  Distribution of stations and location of the reservoir
    表 1  紫坪铺小台网基本情况
    Table 1.  The details of stations used in the study
    台站名称 台站代码 纬度/°N 经度/°E
    八角台 BAJ 30.98 103.41
    白岩台 BAY 30.92 103.47
    桂花树台 GHS 31.09 103.56
    灵岩寺台 LYS 31.03 103.61
    庙子坪台 MZP 31.03 103.53
    桃子坪台 TZP 31.07 103.46
    钻洞子台 ZDZ 30.98 103.55
    下载: 导出CSV 
    | 显示表格

    针对紫坪铺水库所处的龙门山断裂带的速度结构研究成果非常丰富。研究区的一维速度模型结构(表 2)选用周龙泉(2009)根据紫坪铺水库台网从2004年8月—2008年11月4306个地震观测报告拾取到的P波和S波走时数据,利用网格插值的方法计算校正并参考王椿镛等(2002)程建武等(2009)易桂喜等(2013)对该区及其邻近区域的地壳速度结构和构造地质背景研究成果,最终校正确定的一维速度模型。

    表 2  研究区域一维速度模型
    Table 2.  Crustal velocity model in the study area
    深度/km P波速度/km·s-1 S波速度/km·s-1
    0 4.8 2.8
    5 5.8 3.4
    12 6.2 3.6
    20 6.4 3.7
    35 6.6 3.8
    下载: 导出CSV 
    | 显示表格

    挑选出紫坪铺水库小台网2008年2—4月间震级大于ML 1.0的地震事件28个,在MSDP软件下转换地震目录的数据格式为SAC,在SAC程序下标记P波到时及P波、S波时窗的选取,旋转观测波形至RTZ分量,控制振幅数量级,最后利用CAP方法计算得到的理论波形与实际观测波形相拟合。

    拟合过程中不断调试P波部分和S波部分的滤波频率,可以得到不同的、甚至差异大的结果。以往的研究中用CAP方法对震源深度的确定依据是调整滤波频率,在全空间格点搜索震源参数,使观测波形与理论波形更好地吻合,得到震源机制解误差深度曲线的一个全局极小值且是最小值,于是便认定此深度处的震源机制解为最符合实际的震源机制解,此深度即为该事件最佳震源深度。

    调试过程中滤波得到Pnl部分(0.01—0.5Hz)和Snl部分(0.1—0.35Hz),2008年2月14日23:50的ML 2.9地震事件的误差深度曲线与波形拟合曲线分别如图 2图 3所示。

    图 2  ML 2.9事件误差深度曲线
    Figure 2.  The error curve of the ML 2.9 focal mechanism depth
    图 3  波形拟合曲线(红色为理论波形,黑色为观测波形)
    Figure 3.  Waveform fitting curve

    图 2中可知,误差曲线在深度3km左右有一个明显的极小值,获得最佳震源机制解。图 3所示3km的波形拟合曲线中,在7个台站、35个震相中有21个震相的理论波形与观测波形互相关系数大于50,占60%,震源机制解可信。

    依次计算28个地震事件的震源机制解,得到最佳解。计算结果与前人的结果相比较为一致。200802142350事件节面Ⅰ走向36°、发震应力方向351°,与张永久等(2010)利用振幅比法计算所得结果节面走向46°、发震应力方向348°比较吻合。200802142312事件节面走向78°、发震应力方向157°,与张永久等(2010)所得的94°和187°比较一致,证明了计算结果的可靠性。

    图 4中底图颜色差异代表海拔高低,浅蓝色部分代表四川盆地区域,红褐色部分为高山地区,由图可见28个地震事件中有9个零散分布在水库南部和西部,有19个地震事件集中分布在水库东南部都江堰市,这些集中在水库东南部的地震事件为都江堰地震群事件。

    图 4  紫坪铺水库震源机制解平面分布图
    Figure 4.  The plane distribution of focal mechanism of the Zipingpu reservoir

    从垂直于映秀-北川断层与前山断裂的剖面看(图 5),都江堰震群震源深度集中在13km,位于前山断裂带上,且地震事件发震断层以逆冲断层为主,兼带走滑分量。本研究所有震源机制参数列于表 3

    图 5  紫坪铺水库震源机制解剖面分布图
    Figure 5.  The profile distribution of focal mechanism of the Zipingpu reservoir
    表 3  库区ML 1.0以上地震的震源机制参数
    Table 3.  The focal mechanism parameters of earthquakes with magnitude greater than ML 1.0 in the reservoir area
    发震时间 发震地点 深度/km 震级/ML 节面Ⅰ 节面Ⅱ P轴 T轴 N轴
    经度/°E 纬度/°N 走向
    倾角
    滑动角/° 走向
    倾角
    滑动角/° 走向
    倾角
    走向
    倾角
    走向
    倾角
    200802081609 103.603 30.977 11.4 1.13 191 61 -38 302 57 -145 155 46 247 2 339 44
    200802100657 103.469 31.017 7.5 1.06 294 42 81 126 49 98 210 3 91 83 301 6
    200802142134 103.654 30.945 13.3 1.849 355 49 -30 106 68 -135 329 47 226 11 126 41
    200802142312 103.589 30.976 12.6 2.41 203 74 12 110 78 164 157 3 66 20 255 70
    200802142336 103.598 30.981 12.8 1.397 204 80 19 111 71 169 336 6 68 20 231 69
    200802142349 103.612 30.987 14.7 2.974 231 51 51 103 53 128 167 1 76 61 258 29
    200802142350 103.597 30.978 13.2 2.958 36 85 -1 126 89 -175 351 4 261 3 138 85
    200802150026 103.606 30.969 13.5 1.938 211 83 -1 301 89 -173 166 6 76 4 309 83
    200802150043 103.611 30.971 13.5 1.303 214 66 22 115 70 154 165 3 73 32 259 58
    200802150054 103.602 30.975 13.4 2.297 80 66 51 323 45 145 197 12 304 52 98 35
    200802150615 103.605 30.977 13.1 1.03 5 58 -39 118 58 -141 331 49 62 0 152 41
    200802150658 103.621 30.97 12.9 1.436 211 76 16 117 74 165 344 1 74 21 251 69
    200802151624 103.602 30.968 13 1.201 33 90 1 303 89 180 168 1 258 1 32 89
    200802151626 103.605 30.976 13.2 1.273 202 75 12 109 78 165 156 2 65 19 253 71
    200802151637 103.608 30.969 13.4 1.145 35 78 1 305 89 168 351 8 259 9 120 78
    200802181216 103.628 30.949 11.1 2.058 331 81 -14 63 76 -171 287 16 18 3 119 73
    200802201131 103.615 30.965 13.2 2.125 339 66 -15 75 76 -155 299 27 206 7 102 62
    200802201708 103.615 30.965 13.2 2.125 251 36 -1 342 89 -126 221 35 102 34 342 36
    200802201824 103.374 30.92 2.8 1.246 251 36 -1 342 89 -126 221 35 102 34 342 36
    200802212038 103.606 30.97 13.3 1.928 335 52 -79 137 39 -104 291 79 57 6 148 9
    200802221649 103.432 30.956 3.8 1.001 268 84 -6 359 84 -174 223 8 133 0 43 82
    200802270257 103.601 30.976 12.4 1.06 208 76 10 116 80 166 162 3 71 17 262 73
    200803060843 103.461 31.08 9.6 1.055 146 90 2 56 88 180 281 1 11 1 147 88
    200803062010 103.358 30.953 7.4 1.834 277 69 13 182 78 158 231 6 138 24 334 65
    200803062028 103.536 30.919 16 1.205 81 55 50 317 51 133 198 2 292 58 107 32
    200803081416 103.358 30.936 2.1 1.292 300 46 66 153 49 113 227 2 132 73 317 17
    200804041034 103.43 30.967 9.4 1.228 261 75 2 170 88 165 217 9 125 12 343 75
    200804131633 103.395 31.074 9.6 1.319 309 64 19 210 73 153 261 6 168 31 1 58
    下载: 导出CSV 
    | 显示表格

    节面Ⅰ的总体情况可以反映水库研究区断层的大致情况(图 6),其走向在190°—220°方向形成优势分布,即西南—东北方向,与前山断裂带的走向基本一致。滑动角集中在-20°—20°,倾角集中分布在40°—90°,发震主压应力场P轴的走向为北西—南东向或近东西向,且都江堰震群深度都在前山断裂带附近,可见都江堰震群是前山断裂活动的结果。

    图 6  节面Ⅰ、Ⅱ的走向、滑动角、倾角和P、T、N轴走向与倾角的统计特征
    Figure 6.  The strike, rake angle and dip angle of nodal planeIand Ⅱ, and the statistic characteristic of P, T, N axis and inclination

    2008年2月主压应力轴走向变化大,3月、4月压应力轴走向变化小(图 7),呈现出归一和稳定的状态。刁桂苓等(1994, 2011)发现主震前震源区中小地震震源机制解的应力场与构造应力场由不一致变化为一致,则说明主震区域应力积累,在局部发生应力场转换现象到最终与主震应力状态一致时,表明主震区域应力累积已达到相当高的水平,此为大地震发生的征兆。

    图 7  压应力轴(P轴)走向随时间变化图
    Figure 7.  Change of pressure stress axis (P-axis) trend with time

    人们已经认识到汶川8级地震的发生是龙门山断裂带的中央断裂带重新活动产生的结果,引起中央断裂带重新活动的原因及过程中起主导作用的因素,成为今后人们最为关注的问题。如能从中得到一些力学机制上的规律性认识,则可用于指导有关地震演化过程的研究工作。

    2008年2—4月的地震事件代表了汶川8级地震前最后一期的小震活动,其中大于ML 1.0地震事件主要集中在都江堰附近,发震机制以逆冲机制为主,最大地震为逆冲型,其它发震机制逆冲型带走滑分量,少量带正断层分量。发震断层走向是西南—东北方向,与中央断裂带和前山断裂带走向基本一致。从深度剖面看,震源深度分布在13km以上区域。都江堰震群呈重集性,集中在前山断裂带上,其它地震散布在中央断裂带上。发震主压应力场为北西—南东向或近东西向,与该区域构造应力场方向相一致,说明最后一期小震活动与汶川8级地震受同一个区域构造应力场的控制。

    从最后一期小震的最大主压应力场方向随时间变化上看,其方向从150°—350°之间频繁剧烈变化,而临近汶川8级地震发生时缩小到210°—250°,主压应力轴走向趋于与区域构造应力场走向相一致,预示着即将有大地震发生前,发震构造应力场有一个协同化过程(马瑾等,2014)。

    综上所述,2008年2—4月地震事件的发震机制以逆冲机制为主,兼走滑和少量带正断层分量。龙门山断裂带中的前山断裂带与中央断裂带是一个构造变形单元。前山断裂带在中央断裂带之下,其受力如同楔形体,向西北方向地下延伸。当前山断裂带上发生都江堰震群后,引起中央断裂带上的滑动阻力减小,相当于去掉了龙门山断裂带上的中央断裂带的“楔子”(马文涛等,2011)。这些现象说明龙门山断裂带在都江堰附近存在着1个凸凹体,形成应力集中。当都江堰震群发生迫使龙门山断裂带前山断裂逆冲性活动,它加剧了龙门山断裂带中央断裂的活动,为汶川地震的发生创造了构造条件,在一定程度上加速了汶川地震的发生。因此,2008年2—4月地震事件具有加速汶川8级地震发生的性质,对其详细研究将有助于获得地震预测的信息与方法。

    致谢: 本研究的紫坪铺水库专用台网地震数据来源于四川省地震局水库研究所,得到了韩进研究员对本研究的大力支持。
  • 图  1  竖缝连接节点示意图

    Figure  1.  Schematic diagram of vertical joints

    图  2  试验装置

    Figure  2.  Test equipments

    图  3  加载方案

    Figure  3.  Loading scheme

    图  4  试验后的摩擦片

    Figure  4.  Friction plates after test

    图  5  起滑力变化趋势对比

    Figure  5.  Trend contrast of sliding forces

    图  6  阻尼器起滑位移

    Figure  6.  Sliding displacements of the damper

    图  7  阻尼器等效初始刚度

    Figure  7.  Equivalent initial stiffness of the damper

    图  8  阻尼器滞回曲线

    Figure  8.  Hysteretic curves of the damper

    表  1  试验结果

    Table  1.   Test results

    摩擦材料 预紧力
    /N·m
    起滑力
    F+/kN
    起滑力
    F-/kN
    摩擦力不均匀系数
    α
    起滑位移
    /mm
    等效初始刚度
    /N·mm-1
    黄铜板 30 245.880 -239.824 1.025 8.368 29383.365
    50 335.691 -296.601 1.132 11.113 30207.055
    70 355.744 -346.125 1.028 11.841 30043.409
    铝板 30 161.454 -159.961 1.009 6.086 26528.755
    50 215.533 -201.473 1.070 10.010 21531.768
    70 289.810 -281.060 1.031 10.630 27263.405
    碳纤维板 30 264.255 -323.789 0.816 12.009 22004.746
    50 346.364 -372.126 0.931 13.230 26180.197
    橡胶板 30 107.320 -71.060 1.510 4.002 26816.592
    50 127.390 -107.863 1.181 4.442 28678.523
    70 158.803 -124.248 1.278 5.179 30662.869
    90 172.096 -140.694 1.223 6.274 27428.280
    110 231.150 -175.435 1.318 6.678 34613.657
    下载: 导出CSV
  • 韩建强, 张会峰, 乔杨, 2018.滑动长孔高强螺栓摩擦阻尼器滞回性能试验研究.建筑结构学报, 39(S2):315-320. http://www.cnki.com.cn/Article/CJFDTotal-JZJB2018S2043.htm
    刘季, 周云, 李暄, 1996.新型摩擦耗能支撑试验研究.工程抗震, 12(2):10-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600097759
    师骁, 王彦栋, 曲哲等, 2016.含摩擦阻尼器钢连梁的往复加载试验.工程力学, 33(S1):156-160. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gclx2016z1028
    隋伟宁, 周魁, 王占飞, 2018.转动型摩擦阻尼器力学性能及抗震效果分析.工业建筑, 48(4):137-143. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gyjz201804027
    吴斌, 欧进萍, 1997.Pall摩擦耗能器的设计方法.哈尔滨建筑大学学报, 30(4):9-14. http://www.cnki.com.cn/Article/CJFDTotal-HEBJ704.001.htm
    吴斌, 欧进萍, 1999.拟粘滞摩擦耗能器的性能试验与分析.世界地震工程, 15(1):1-11. http://www.cnki.com.cn/Article/CJFDTotal-SJDC199901000.htm
    吴斌, 张纪刚, 欧进萍, 2003a.考虑几何非线性的Pall型摩擦阻尼器滞回特性分析.工程力学, 20(1):21-26, 47. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gclx200301004
    吴斌, 张纪刚, 欧进萍, 2003b.拟黏滞摩擦阻尼器滞回特性及支撑内力分析.哈尔滨工业大学学报, 35(7):834-838, 843, 849. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgydxxb200307020
    张艳霞, 赵文占, 陈媛媛等, 2015.长孔螺栓摩擦阻尼器试验研究.工程抗震与加固改造, 37(4):90-95, 73. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gckz201504013
    赵川, 潘文, 叶燎原等, 2003.摩擦耗能支撑装置的构造及安装.建筑结构, 33(8):47-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jzjg200308015
    中华人民共和国住房和城乡建设部, 2015.JGJ/T 101-2015建筑抗震试验规程.北京:中国建筑工业出版社.
    周云, 刘季, 李暄, 1996.摩擦耗能支撑的试验研究.哈尔滨建筑大学学报, 29(3):12-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600211691
    周云, 刘季, 1997.两种摩擦耗能器的比较试验研究.地震工程与工程振动, 17(1):40-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700037739
    Gerald F., Anagnos T. F., Goodson T. M., et al., 1989. Slotted bolted connections in a seismic design for concentrically braced connections. Earthquake Spectra, 5(2):383-391. http://www.researchgate.net/publication/249872648_Slotted_Bolted_Connections_in_Aseismic_Design_for_Concentrically_Braced_Connections
    Martinez-Rueda J. E., 2000. Incorporation of hysteretic devices on bracing systems of low invasivity: A new approach for the seismic redesing of framed structures. 12WCEE.
    Morgen B. G., Kurama Y. C., 2004. A friction damper for post-tensioned precast concrete beam-to-column joints. Proceedings of 13th World Conference on Earthquake Engineering, Van couver, Canada.
    Mualla I. H., 2000. Experimental evaluation of new friction damper device. Proceedings of 12th World Conference on Earthquake Engineering,  Auckland,  New Zealand.
    Pall A. S., Marsh C., 1982. Seismic response of friction damped braced frames. Journal of the Structural Division, ASCE, 108(ST6):1313-1323. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC027480363
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  43
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-05
  • 刊出日期:  2020-03-01

目录

/

返回文章
返回