Parametric Study on the Residual Displacement Spectra
-
摘要: 从PEER强震数据库中选取4类场地的320条地震动记录作为输入,采用BISPEC程序对非线性单自由度(SDOF)体系(周期T=0.05—5s)进行非线性时程分析,得到相应的残余位移反应谱(Dres),进而研究地震动特性和恢复力模型动力参数对Dres的影响,得到如下结论:①Dres谱值随震级和PGA的增加而增大;其他设防烈度的Dres可由PGA其他与PGA基准之比调整基准烈度的Dres得到。②场地土较硬时,场地类型对Dres的影响较小;场地土较软时,Dres谱值随土质的变软而增大。③当位移延性比μ较小时,屈服后刚度比η对Dres的影响可忽略;但当μ较大时,Dres谱值随η的增加而减小。另外,Dres谱值还随阻尼比ξ的增加而减小。④随着T或μ的增大,Dres谱值均呈递增趋势;但当μ>3后,μ对Dres谱值的影响有所下降。Abstract: This study obtains the corresponding residual displacement response spectra (Ders) by selecting 320 strong motion records from the PEER as input and adopting the BISPEC sofeware to carry out the nonlinear time-history analysis on the nonlinear Single Degree of Freedom (SDOF) system (period T=0.05~5s),and then study the impact of ground motion characteristics and dynamic parameters of the restoring force model. Some results are as follow:1) The values of the Dres increase with a rise in the earthquake magnitude and PGA. The Dres under other design intensities can be obtained by using the ratio of PGAother to PGAstandard to adjust Dres under the standard design intensity. 2) When the soil condition of the site is hard,the effects of the site on Dres are minor; when the soil condition of the site is soft,the values of the Dres increase with the softening of the soil condition of site. 3) When the displacement ductility (μ) is smaller than μ,the effects of the post-yield stiffness ratio (η) on the Dres is negligible,but when μ is larger,the values of the Dres decrease with an increase in η. Meanwhile,the values of the Dres also decrease as the damping ratio (ξ) increases. 4) The values of the Dres show an increasing trend with an increase in the T or μ,but the effects of μ on the Dres decrease when μ> 3.
-
引言
关于场地地震反应的分析已有大量研究成果,研究表明土壤在地震作用下会表现出材料非线性效应ADDIN EN.CITE.DATA(Joyner等,1975;Huang等,2001;Arslan等,2006;Hosseini等,2012)。等效线性化方法ADDIN EN.CITE.DATA(Schnabel等,1972;Idriss等,1992;Bardet等,2000;王笃国等,2016)是一种频域方法,通过在不同土体应变条件下选择等效阻尼比和剪切模量,将非线性问题转化为线性问题。当采用材料非线性本构模型描述土体非线性时,需采用时间积分算法求解非线性动力有限元方程。时间积分算法可分为隐式方法和显式方法。隐式算法每时刻需求解线性代数方程组,计算效率相对较低,如Wilson-θ法和Newmark法等。显式算法无需求解线性代数方程组,适合于强非线性和自由度数目较大的问题。研究者已提出多种显式时间积分算法ADDIN EN.CITE.DATA(Chung等,1994;王进廷等,2002;Belytschko等,2014)。作者近期提出一种二阶精度的单步显式算法,该算法适合变时步问题,在线弹性范围内稳定性较好。本文将该算法推广至求解非线性动力有限元方程中,并将其应用于地震波垂直入射时非线性地震反应分析。
1. 非线性动力有限元方程的显式时间积分算法
设已知非线性体系第${t_i}$时步的受力状态,求解第${t_{i + 1}}$时步的非线性结构动力学方程:
$${\boldsymbol{M}}{{\boldsymbol{\ddot u}}_{i + 1}}{\boldsymbol{ + C}}{{\boldsymbol{\dot u}}_{i + 1}} + {\boldsymbol{f}}_{i + 1}^S{\boldsymbol{ = }}{{\boldsymbol{f}}_{i + 1}}$$ (1) 式中M、C、${{\boldsymbol{f}}^S}$和${\boldsymbol{f}}$分别表示非线性体系的质量矩阵、阻尼矩阵、内力向量和外荷载向量;u表示位移,点号对时间t求导,i+1表示第${t_{i + 1}}$时刻。第i+1时刻时间步长为:
$${\boldsymbol{\Delta }}{t_i} = {t_{i + 1}} - {t_i}$$ (2) 文献显式方法求解非线性方程(1)的过程如下,第i+1时刻位移${{\boldsymbol{u}}_{i + 1}}$为:
$${{\boldsymbol{u}}_{i + 1}} = {{\boldsymbol{u}}_i} + \mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{t_i}{{\boldsymbol{\dot u}}_i} + \frac{{\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{t_i}^2}}{2}{{\boldsymbol{\ddot u}}_i}$$ (3) 第i+1时刻位移增量$\mathit{\Delta }{{\boldsymbol{u}}_i}$、内力增量$\mathit{\Delta }{\boldsymbol{f}}_i^S$和内力全量${\boldsymbol{f}}_{i + 1}^S$分别为:
$$\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{{\boldsymbol{u}}_i} = {{\boldsymbol{u}}_{i + 1}} - {{\boldsymbol{u}}_i}$$ (4) $$\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{f}}_i^S = {\boldsymbol{f}}(\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{{\boldsymbol{u}}_i})$$ (5) $${\boldsymbol{f}}_{i + 1}^S = {\boldsymbol{f}}_i^S + \mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{f}}_i^S$$ (6) 第i+1时刻预估速度${{\boldsymbol{\dot {\tilde u}}}_{i + 1}}$、预估加速度${{\boldsymbol{\ddot {\tilde u}}}_{i + 1}}$、速度${{\boldsymbol{\dot u}}_{i + 1}}$和加速度${{\boldsymbol{\ddot u}}_{i + 1}}$分别为
$${{\boldsymbol{\dot {\tilde u}}}_{i + 1}} = {{\boldsymbol{\dot u}}_i} + \mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{t_i}{{\boldsymbol{\ddot u}}_i}$$ (7) $${{\boldsymbol{\ddot {\tilde u}}}_{i + 1}} = {{\boldsymbol{M}}^{ - 1}}({{\boldsymbol{f}}_{i + 1}} - {\boldsymbol{C\dot {\tilde u}}}_{i + 1}^{} - {\boldsymbol{f}}_{i + 1}^S)$$ (8) $${{\boldsymbol{\dot u}}_{i + 1}} = {{\boldsymbol{\dot u}}_i} + \frac{{\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{t_i}}}{2}({{\boldsymbol{\ddot u}}_i} + {{\boldsymbol{\ddot {\tilde u}}}_{i + 1}})$$ (9) $${{\boldsymbol{\ddot u}}_{i + 1}} = {{\boldsymbol{M}}^{ - 1}}({{\boldsymbol{f}}_{i + 1}} - {\boldsymbol{C\dot u}}_{i + 1}^{} - {\boldsymbol{f}}_{i + 1}^S)$$ (10) 式(3)—式(10)为求解式(1)的显式算法。算法中需由位移增量计算内力增量,目前常用的应力计算方法包括向前欧拉法、向后欧拉法和完全隐式计算法等ADDIN EN.CITE.DATA(Sloan等,1992;2001;Ahadi等,2003)。下面给出式(5)由位移增量计算内力增量的过程,即一种带误差控制的修正欧拉算法。
对于每个有限单元,由位移增量$\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{u}}_i^e$计算应变增量$\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ ε}} }}_i^e$的表达式为:
$$\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ ε}} }}_i^e = {{\boldsymbol{B}}^e}\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{u}}_i^e$$ (11) 式中Be为应变矩阵。将ti时刻单元应变增量$\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ ε}} }}_i^e$赋值给子步应变增量$\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ ε}} }}_s^e$,ti时刻单元应力${\boldsymbol{ \pmb{\mathit{ σ}} }}_i^e$赋值给${\boldsymbol{ \pmb{\mathit{ σ}} }}_{i + 1}^e$,初始化子步应变增量和应力状态分别为:
$$\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ ε}} }}_s^e \leftarrow \mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ ε}} }}_i^e$$ (12) $${\boldsymbol{ \pmb{\mathit{ σ}} }}_{i + 1}^e \leftarrow {\boldsymbol{ \pmb{\mathit{ σ}} }}_i^e$$ (13) 每个子步中应力增量计算思路见图 1,具体计算公式如下:
$${\boldsymbol{D}}_1^e = {\boldsymbol{D}}({\boldsymbol{ \pmb{\mathit{ σ}} }}_{i + 1}^e)$$ (14) $$\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ σ}} }}_1^e = {\boldsymbol{D}}_1^e\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ ε}} }}_s^e$$ (15) $${\boldsymbol{D}}_2^e = {\boldsymbol{D}}({\boldsymbol{ \pmb{\mathit{ σ}} }}_{i + 1}^e + \mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ σ}} }}_1^e)$$ (16) $$\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ σ}} }}_2^e = {\boldsymbol{D}}_2^e\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ ε}} }}_s^e$$ (17) $$\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ σ}} }}_s^e = \frac{{\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ σ}} }}_1^e + \mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ σ}} }}_2^e}}{2}$$ (18) 式中${{\boldsymbol{D}}^e}$为单元应力-应变关系矩阵。判断每个子步中应力增量$\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{{\boldsymbol{ \pmb{\mathit{ σ}} }}_s}$是否符合精度要求的误差判断式为:
$${e_r} = \frac{{\left\| {\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ σ}} }}_1^e - \mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ σ}} }}_2^e} \right\|}}{{\left\| {{\boldsymbol{ \pmb{\mathit{ σ}} }}_{i + 1}^e + \mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ σ}} }}_s^e} \right\|}}$$ (19) 判断误差er是否小于预先给定的判断值st,条件不满足时,缩小子步应变增量为:
$$\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ ε}} }}_s^e \leftarrow A\sqrt {{{{s_t}} \mathord{\left/ {\vphantom {{{s_t}} {{e_r}}}} \right. } {{e_r}}}} \mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ ε}} }}_s^e$$ (20) 式中A为误差峰值系数。采用缩小的子步应变增量重新进行式(14)—式(19)的计算与判断,循环直至满足精度要求,更新剩余应变增量和应力状态分别为:
$$\mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ ε}} }}_i^e \leftarrow \mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ ε}} }}_i^e - \mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ ε}} }}_s^e$$ (21) $${\boldsymbol{ \pmb{\mathit{ σ}} }}_{i + 1}^e \leftarrow {\boldsymbol{ \pmb{\mathit{ σ}} }}_{i + 1}^e + \mathit{\boldsymbol{ \boldsymbol{\varDelta} }}{\boldsymbol{ \pmb{\mathit{ σ}} }}_s^e$$ (22) 利用更新剩余应变增量和应力状态循环执行式(14)—式(20),直至剩余应变增量小于等于零结束。
利用求得的第i+1时刻单元应力可得到单元应力增量和内力增量分别为:
$$ \Delta \boldsymbol{\sigma }_i^e = \boldsymbol{\sigma }_{i + 1}^e - \boldsymbol{\sigma }_i^e $$ (23) $$ \Delta {\boldsymbol{f}}_i^S{\rm{ = }}\sum\limits_e {\int {{{\boldsymbol{B}}^{e{\rm{T}}}}\boldsymbol{\Delta }{\boldsymbol{\sigma }}_i^e{\bf{d}}A} } $$ (24) 2. 地震波垂直入射时场地非线性地震反应分析
本节将上述非线性有限元方程的显式时间积分算法应用于地震波垂直入射时场地非线性地震反应分析中。假定基岩为线弹性半空间,考虑基岩上覆土层的材料非线性,不考虑土体阻尼。在土层下部设置黏性边界条件模拟半空间基岩的辐射阻尼,并在该处以等效结点力的方式实现地震动输入。
计算模型见图 2,选取A点作为观测点。土体非线性材料本构模型选取邓肯-张模型,土体线弹性参数见表 1,未给出配套的非线性参数,故算例中的非线性参数参考实际情况选取,后续研究中将使用更真实表现土体非线性行为的本构模型及真实工程场地参数。算例中的大气压参数取100kPa,内摩擦角增量取0°。入射地震动分别选取狄拉克脉冲和实测地震动(Gilroy Array #3,Coyote Lake, 1979)。入射狄拉克脉冲见图 3,观测点结果见图 4,实测地震动见图 5,观测点结果见图 6。图 4、图 6中给出采用中心差分法的计算结果作为参考解,由图 4、图 6可知,本文算法与中心差分法计算结果吻合较好,说明本文算法的有效性。
表 1 土层参数Table 1. Parameters of soils土质 深度/
m$\rho $/
(g/cm3)cs /
(m/s)v
-EN
-Rf
-c/
(MPa)θ/(°) D
-F
-人工填土 0—1.0 1.9 140 0.33 0.33 0.758 0.084 26.9 1.06 0.021 全新世砂土 1.0—5.1 1.9 140 0.32 0.33 0.758 0.084 26.9 1.06 0.021 全新世砂土 5.1—8.3 1.9 170 0.32 0.36 0.768 0.120 31.0 1.11 0.015 更新世粘土 8.3—11.4 1.9 190 0.40 0.44 0.822 0.188 28.4 1.01 0.012 更新世粘土 11.4—17.2 1.9 240 0.30 0.44 0.822 0.188 28.4 1.01 0.012 更新世砂土 17.2—22.2 2.0 330 0.26 0.51 0.840 0.300 30.0 1.02 0.011 基岩 >22.2 2.0 330 0.26 - - - - - - 表 1中ρ、cs、v、EN、Rf、c、θ为模型参数,分别表示密度、剪切波速、泊松比、无量纲幂次、破坏比、土的内聚力、土的摩擦角。D、F为试验常数。
3. 结论
本文发展一种求解材料非线性结构动力学方程的显式时间积分算法,并应用于地震波竖直入射时非线性地震反应分析中,通过算例验证了该方法的有效性。该显式算法具有无需对角阻尼矩阵、单步、稳定性良好等优点。本文考虑了邓肯-张非线性弹性本构模型,下步研究可考虑将该显式算法扩展到弹塑性本构模型及更能反映土层真实变形的本构模型中。
-
表 1 抗震规范场地类别的对比
Table 1. Table 1 Comparison of site conditions
180m•s-1 360 m•s-1 760 m•s-1 1500 m•s- E D C B A 150 m•s-1 250 m•s-1 500m•s-1 Ⅳ Ⅲ Ⅱ Ⅰ -
杜修力, 许紫刚, 袁雪纯等, 2018.地震动峰值位移和峰值速度对地下结构地震反应的影响.震灾防御技术, 13(2):293-303. http://zzfy.eq-j.cn/zzfyjs/ch/reader/view_abstract.aspx?flag=1&file_no=20180205&journal_id=zzfyjs 李芳宝, 朱晞, 2007.近场具有脉冲地层运动的单自由度双线性结构残余位移比谱.中国铁道科学, 28(3):49-55. doi: 10.3321/j.issn:1001-4632.2007.03.010 李平, 田兆阳, 肖瑞杰等, 2017.基于三轴试验的软土震陷简化计算方法研究.震灾防御技术, 12(1):145-156. http://zzfy.eq-j.cn/zzfyjs/ch/reader/view_abstract.aspx?flag=1&file_no=20170115&journal_id=zzfyjs 李宇, 2010.考虑残余位移和土-结构相互作用的桥梁结构基于性能的抗震设计及评估.北京: 北京交通大学. http://cdmd.cnki.com.cn/Article/CDMD-10613-1017298616.htm 中华人民共和国交通运输部, 2008.JTG/T B02-01-2008公路桥梁抗震设计细则.北京: 人民交通出版社. 中华人民共和国铁道部, 2006.GB 50111-2006铁路工程抗震设计规范.北京: 中国计划出版. 周锡元, 王国权, 杨润林等, 2001.1999年9月21日台湾集集地震中不同场地上峰值加速度的衰减特征.大型复杂结构的关键科学问题及设计理论研究论文集. Japan Road Association, 1996. Design specifications of highway bridges, Part V: Seismic design. Tokyo, Japan. Kawashima K., MacRae G. A., Hoshikuma J., et al., 1998. Residual displacement response spectrum. Journal of Structural Engineering, 124(5):523-530. doi: 10.1061/(ASCE)0733-9445(1998)124:5(523) MacRae G. A., Kawashima K., 1997. Post-earthquake residual displacements of bilinear oscillators. Earthquake Engineering and Structural Dynamics, 26(77):701-716. http://cn.bing.com/academic/profile?id=28c5e7353ea2f765dbdda2af0bf0767f&encoded=0&v=paper_preview&mkt=zh-cn Mahin S. A., Bertero V. V., 1981. An evaluation of inelastic seismic response spectra. Journal of the Structural Division, 107(9):1777-1795. Mahmoud M.Hachem. BISPEC: Interactive Software for the Computation of Unidirectional and Bidirectional Nonlinear Earthquake Spectra[J]. Structures Congress, 2004: 1-12 Zatar W. A., Mutsuyoshi H., 2000. Reduced residual displacements of partially prestressed concrete bridge piers. 12th World Conference on Earthquake Engineering, Auckland, New Zealand. -