Seismic Fragility Analysis of Reinforced Concrete Plant Structure Considering the Influence of Infilled Walls
-
摘要: 采用对角斜撑模拟纵向填充墙的作用,建立考虑填充墙和不考虑填充墙厂房结构模型,采用拉丁超立方抽样技术建立考虑材料不确定性的结构分析样本,基于随机Pushover分析确定结构不同破坏状态下的统计参数。综合考虑结构材料强度及输入地震动不确定性的影响,通过非线性时程分析开展单层钢筋混凝土厂房结构易损性研究,在此基础上比较结构横、纵向易损性的差异,研究填充墙对结构易损性的影响。研究结果表明:钢筋混凝土厂房结构体系横向地震易损性显著大于纵向地震易损性;对纵向结构体系而言,加入填充墙会明显降低结构易损性,但在相同强度的地震动作用下,填充墙破坏程度比主体结构严重,这与厂房结构的实际震害特征相符。
-
关键词:
- 钢筋混凝土工业厂房 /
- 地震易损性 /
- 拉丁超立方抽样 /
- 随机Pushover分析填充墙 /
Abstract: The diagonal strut was used to simulate the action of the longitudinal in-filled walls, and the plant structure model with and without in-filled walls was established. The Latin Hypercube Sampling was used to establish structural analysis samples considering material uncertainties, and based on random Pushover analysis, the statistical parameters of different failure states of structures were determined. Considering the influence of the uncertainties of structural material strength and input ground motion, the fragility of single-story reinforced concrete plant structure was studied using nonlinear dynamic time history analysis. On this basis, the difference between transverse and longitudinal fragility of structure was compared and the influence of in-filled walls on the fragility of structure was studied. The results show that the transverse seismic fragility of reinforced concrete plant structure is significantly greater than the longitudinal seismic fragility, and the in-filled walls will obviously reduce the longitudinal seismic fragility of the structure. However, under the same seismic intensity, the damage of the in-filled walls is more serious than that of the main structure, which is consistent with the actual seismic damage characteristics of the plant structures. -
表 1 结构不确定性参数
Table 1. Considered structural random parameters
不确定性因素 随机变量 均值 变异系数 分布类型 C30混凝土 抗压强度${f_\text{c}}$ $26.1\text{MPa}$ 0.14 对数正态 弹性模量${E_\text{c}}$ $3 \times {10^4}\text{MPa}$ 0.06 对数正态 容重${\gamma _\text{c}}$ 26.5kN·m-3 0.07 正态 HRB335钢筋 抗拉强度${f_y}$ $378\text{MPa}$ 0.07 对数正态 弹性模量${E_s}$ $2.0 \times {10^5}\text{MPa}$ 0.02 对数正态 表 2 结构横向各破坏状态变形指标统计参数
Table 2. Statistical parameters of deformation indexes for each damage state of the structure(The transverse orientation)
破坏状态 轻微破坏 中等破坏 严重破坏 倒塌破坏 ${m_\text{C}}$ 0.004638 0.009784 0.01545 0.02776 ${\beta _\text{C}}$ 0.1759 0.1829 0.1819 0.1147 表 3 结构纵向各破坏状态变形指标统计参数
Table 3. Statistical parameters of deformation indexes for each damage state of the structure(The longitudinal orientation)
破坏状态 轻微破坏 中等破坏 严重破坏 倒塌破坏 ${m_\text{C}}$ 0.002067 0.004618 0.009461 0.01687 ${\beta _\text{C}}$ 0.2546 0.0813 0.0664 0.1468 表 4 考虑填充墙时结构纵向各破坏状态变形指标统计参数
Table 4. Statistical parameters of deformation indexes for each damage state of the structure with considering the infilled walls(The longitudinal orientation)
破坏状态 轻微破坏 中等破坏 严重破坏 倒塌破坏 ${m_\text{C}}$ 0.001202 0.002596 0.005088 0.006547 ${\beta _\text{C}}$ 0.3318 0.2479 0.0945 0.1072 表 5 砌体填充墙性能水准划分
Table 5. Performance level division of the infilled walls
破坏状态 轻微破坏 中等破坏 严重破坏 倒塌破坏 ${\mu _\text{C}}$ 0.001 0.0018 0.005 0.006 ${\delta _\text{C}}$ 0.35 0.35 0.35 0.35 表 6 考虑填充墙和不考虑填充墙时易损性曲线校正系数
Table 6. The correction coefficient of fragility curve when considering the infilled walls and not considering the infilled walls
破坏状态 轻微破坏 中等破坏 严重破坏 倒塌破坏 不考虑填充墙 0.187g 0.418g 0.857g 1.528g 考虑填充墙 0.244g 0.577g 1.266g 1.626g 校正系数 1.30 1.38 1.43 1.06 -
刘大海, 杨翠如, 钟锡根, 1989.单层厂房抗震整体分析.世界地震工程, (2):7-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004586837 刘桂秋, 2005.砌体结构基本受力性能的研究.长沙: 湖南大学. 刘阳冰, 2009.钢-混凝土组合结构体系抗震性能研究与地震易损性分析.北京: 清华大学. 裘民川, 刘大海, 1989.单层厂房抗震设计.北京:地震出版社. 童岳生, 钱国芳, 1985.砖填充墙钢筋混凝土框架的变形性能及承载能力.西安建筑科技大学学报(自然科学版), (2):1-21. http://www.cnki.com.cn/Article/CJFD1985-XAJZ198502000.htm 徐超, 温增平, 2017.不同设防标准RC框架结构基于易损性分析的抗震性能评估.震灾防御技术, 12(4):845-857. http://zzfy.eq-j.cn/zzfyjs/ch/reader/view_abstract.aspx?flag=1&file_no=20170413&journal_id=zzfyjs 阎红霞, 2012.楼板和填充墙对RC框架结构抗震性能的影响.北京: 北京交通大学. 于晓辉, 2012.钢筋混凝土框架结构的概率地震易损性与风险分析.哈尔滨: 哈尔滨工业大学. 张号浩, 2011.单层钢筋混凝土柱厂房地震易损性分析.哈尔滨: 中国地震局工程力学研究所. 张明远, 2017.基于构件性能的填充墙框架结构地震易损性研究.哈尔滨: 中国地震局工程力学研究所. 赵文哲, 温增平, 徐超等, 2018.楼层侧向刚度比对砌体结构地震易损性的影响分析.震灾防御技术, 13(4):878-892. http://zzfy.eq-j.cn/zzfyjs/ch/reader/view_abstract.aspx?flag=1&file_no=20180415&journal_id=zzfyjs 朱彦鹏, 2014.钢筋混凝土结构课程设计指南.北京:中国建筑工业出版社. 朱健, 谭平, 周福霖, 2010.基于位移的钢筋混凝土结构单层厂房易损性分析[J].振动与冲击, 29(1):207-213, 247. doi: 10.3969/j.issn.1000-3835.2010.01.045 庄一舟, 谢狄敏, 傅军, 1999.砌体结构抗震可靠度分析方法.工程力学, (a03):920-925. http://d.old.wanfangdata.com.cn/Conference/75229 Babič A., Dolšek M., 2016. Seismic fragility functions of industrial precast building classes. Engineering Structures, 118:357-370. doi: 10.1016/j.engstruct.2016.03.069 Beilic D., Casotto C., Nascimbene R., et al., 2017. Seismic fragility curves of single storey RC precast structures by comparing different Italian codes. Earthquakes and Structures, 12(3):359-374. doi: 10.12989/eas.2017.12.3.359 Bolognini D., Borzi B., Pinho R., 2008. Simplified pushover-based vulnerability analysis of traditional Italian RC precast structures.14th Wcee. Casotto C., Silva V., Crowley H., et al., 2015. Seismic fragility of Italian RC precast industrial structures. Engineering Structures, 94:122-136. doi: 10.1016/j.engstruct.2015.02.034 Cornell C. A., Jalayer F., Hamburger R. O., et al., 2002. Probabilistic basis for 2000 SAC Federal Emergency Management Agency steel moment frame guidelines. Journal of Structural Engineering, 128(4):526-533. doi: 10.1061/(ASCE)0733-9445(2002)128:4(526) Mainstone R. J., Weeks G. A., 1970. The influence of bounding frame on the racking stiffness and strength of brick walls. England: Proc., 2nd Int. Brick Masonry Conf. Palanci M., Senel S. M., Kalkan A., 2016. Assessment of one story existing precast industrial buildings in Turkey based on fragility curves. Bulletin of Earthquake Engineering, 15(1):1-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f3c7b7f1209c63132dda8e004d2e8dcb Polyakov S. V., 1960. On the interaction between masonry filler walls and enclosing frame when loading in the plane of the wall. Translation in Earthquake Engineering, 36-42. Senel S. M., Kayhan A. H., 2010. Fragility based damage assessment in existing precast industrial buildings:A case study for Turkey. Structural Engineering & Mechanics, 34(1):39-60. Shome N., 1999. Probabilistic seismic demand analysis of nonlinear structures. Stanford: Stanford University. Smith B. S.1967. Methods for predicting the lateral stiffness and strength of multi-storey infilled frames. Building Science, 2(3):247-257. doi: 10.1016/0007-3628(67)90027-8