• ISSN 1673-5722
  • CN 11-5429/P

基于一种新显式时间积分算法的场地非线性地震反应分析

赵密 王亚东 高志懂 段亚伟 杜修力

赵密, 王亚东, 高志懂, 段亚伟, 杜修力. 基于一种新显式时间积分算法的场地非线性地震反应分析[J]. 震灾防御技术, 2019, 14(4): 699-706. doi: 10.11899/zzfy20190401
引用本文: 赵密, 王亚东, 高志懂, 段亚伟, 杜修力. 基于一种新显式时间积分算法的场地非线性地震反应分析[J]. 震灾防御技术, 2019, 14(4): 699-706. doi: 10.11899/zzfy20190401
Zhao Mi, Wang Yadong, Gao Zhidong, Duan Yawei, Du Xiuli. A New Explicit Time Integration Algorithm for Nonlinear Seismic Response Analysis of Site[J]. Technology for Earthquake Disaster Prevention, 2019, 14(4): 699-706. doi: 10.11899/zzfy20190401
Citation: Zhao Mi, Wang Yadong, Gao Zhidong, Duan Yawei, Du Xiuli. A New Explicit Time Integration Algorithm for Nonlinear Seismic Response Analysis of Site[J]. Technology for Earthquake Disaster Prevention, 2019, 14(4): 699-706. doi: 10.11899/zzfy20190401

基于一种新显式时间积分算法的场地非线性地震反应分析

doi: 10.11899/zzfy20190401
基金项目: 

国家973计划项目课题 2015CB057902

国家自然科学基金项目 51678015

教育部创新团队发展计划项目 IRT_17R03

详细信息
    作者简介:

    赵密, 男, 生于1980年。教授, 博士。主要从事重大工程抗震研究。E-mail:zhaomi@bjut.edu.cn

A New Explicit Time Integration Algorithm for Nonlinear Seismic Response Analysis of Site

  • 摘要: 针对线弹性结构动力学方程,作者已提出一种具有良好稳定性的二阶精度单步显式时间积分算法。本文将该方法推广到求解材料非线性结构动力学方程中,采用带误差控制的修正欧拉算法计算单元应力,提高显式时间积分算法的精度。将求解非线性问题的显式算法应用于地震波垂直入射时非线性地震反应分析中,使用黏性边界模拟场地土层底部半空间基岩的辐射阻尼,并考虑地震动输入。与中心差分法计算结果进行对比,以表明新显式算法的有效性。
  • 图  1  修正欧拉算法计算应力增量

    Figure  1.  Modified Euler algorithm to calculate stress increment

    图  2  大开车站沿线土层纵断面构造

    Figure  2.  Site condition of the Daikai subway station in vertical direction

    图  3  狄拉克脉冲速度和加速度时程图

    Figure  3.  Velocity and acceleration time history of the Dirac pulse

    图  4  狄拉克脉冲入射时场地反应分析结果

    Figure  4.  Results of site analysis under the incident of Dirac pulse

    图  5  实测地震动速度和加速度时程图

    Figure  5.  Velocity and acceleration time history of the seismic motion

    图  6  实测地震动入射时场地反应分析结果

    Figure  6.  Results of site reaction analysis under the incident of the seismic motion

    表  1  土层参数

    Table  1.   Parameters of soils

    土质 深度/
    m
    $\rho $/
    (g/cm3
    cs/
    (m/s)
    v
    -
    EN
    -
    Rf
    -
    c/
    (MPa)
    θ/(°) D
    -
    F
    -
    人工填土 0—1.0 1.9 140 0.33 0.33 0.758 0.084 26.9 1.06 0.021
    全新世砂土 1.0—5.1 1.9 140 0.32 0.33 0.758 0.084 26.9 1.06 0.021
    全新世砂土 5.1—8.3 1.9 170 0.32 0.36 0.768 0.120 31.0 1.11 0.015
    更新世粘土 8.3—11.4 1.9 190 0.40 0.44 0.822 0.188 28.4 1.01 0.012
    更新世粘土 11.4—17.2 1.9 240 0.30 0.44 0.822 0.188 28.4 1.01 0.012
    更新世砂土 17.2—22.2 2.0 330 0.26 0.51 0.840 0.300 30.0 1.02 0.011
    基岩 >22.2 2.0 330 0.26 - - - - - -
    下载: 导出CSV
  • 杜修力, 李洋, 许成顺等, 2016.1995年日本阪神地震大开地铁车站震害原因及成灾机理分析研究进展.岩土工程学报, 40(2):223-236. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201802002
    栾茂田, 林皋, 1992.场地地震反应一维非线性计算模型.工程力学, 9(1):94-103. http://www.cnki.com.cn/Article/CJFDTotal-GCLX199201015.htm
    王笃国, 赵成刚, 2016.地震波斜入射时二维成层介质自由场求解的等效线性化方法.岩土工程学报, 38(3):554-561. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201603020
    王进廷, 杜修力, 2002.有阻尼体系动力分析的一种显式差分法.工程力学, 19(3):109-112. http://d.old.wanfangdata.com.cn/Periodical/gclx200203022
    尹候权, 2015.地震波斜入射时成层半空间场地反应分析方法及其应用.北京: 北京工业大学.
    Ahadi A., Krenk S., 2003. Implicit integration of plasticity models for granular materials. Computer Methods in Applied Mechanics and Engineering, 192(31-32):3471-3488. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dd253a3e8dddeed056e6c5a8b1aa1498
    Arslan H., Siyahi B., 2006. A comparative study on linear and nonlinear site response analysis. Environmental Geology, 50(8):1193-1200. doi: 10.1007/s00254-006-0291-4
    Bardet J. P., Ichii K., Lin C. H., 2000. EERA-A computer program for equivalent-linear earthquake site response analyses of layered soil deposits.
    Belytschko T., Liu W. K., Moran B., et al., 2014. Nonlinear finite elements for continua and structures. 2nd updated and extended ed. John Wiley & Sons Inc.
    Chopra A. K., 2009. Dynamics of structures: Theory and applications to earthquake engineering (3rd edn). Tsinghua University Press: Beijing.
    Chung J., Lee J. M., 1994. A new family of explicit time integration methods for linear and non-linear structural dynamics. International Journal for Numerical Methods in Engineering, 37(23):3961-3976. doi: 10.1002/nme.1620372303
    Crisfield M. A., 1991. Nonlinear finite element analysis of solids and structures. Journal of Engineering Mechanics, 17(6):1504-1505. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1110.5321
    Duncan J. M., Chang C. Y., 1970. Nonlinear analysis of stress and strain in soils. Journal of the Soil Mechanics and Foundations Division ASCE, 96(5):1629-1653. http://ci.nii.ac.jp/naid/10007805651
    Hashash Y. M. A., Phillips C., Groholski D. R., 2010. Recent advances in non-linear site response analysis. Fifth International Conference on Recent Advances in Geotechnical Earthquake Engingeering and Soil Dynamics and Symposium in Honor of Professor I.M. Idriss. San Diego, California.
    Hosseini S. M. M. M., Pajouh M. A., 2012. Comparative study on the equivalent linear and the fully nonlinear site response analysis approaches. Arabian Journal of Geosciences, 5(4):587-597. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8661fab143f2e354f593dd1ff81acd3c
    Huang H. C., Shieh C. S., Chiu H. C., 2001. Linear and nonlinear behaviors of soft soil layers using Lotung downhole array in Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 12(3):503-524. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC027479014
    Idriss I. M., Sun J. I., 1992. User's Manual for SHAKE91: A computer program for conducting equivalent linear seismic response analysis of horizontally layered soil deposits. Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California.
    Joyner W. B., Chen A. T. F., 1975. Calculation of nonlinear ground response in earthquakes. Bulletin of the Seismological Society of America, 65(5):1315-1336. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003603734
    Schnabel P. B., Lysmer J., Seed H. B., 1972. SHAKE a computer program for earthquake response analysisi of horizontally layered sites. Report No. UBC/EERC72-12. Berkeley, USA: Earthquake Research Center, University of California.
    Sloan S. W., Abbo A. J., Sheng D., 2001. Refined explicit integration of elastoplastic models with automatic error control. Engineering Computations, 18(1-2):121-194. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=76c28dcc34c077dea2b16ae6d6674092
    Sloan S. W., Booker J. R., 1992. Integration of tresca and mohr-coulomb constitutive relations in plane strain elastoplasticity. International Journal for Numerical Methods in Engineering, 33(1):163-196. doi: 10.1002/nme.1620330112
    Zhao M., Li H., Cao S. et al. 2019. An explicit time integration algorithm for linear and non-linear finite element analyses of dynamic and wave problems. Engineering Computations, 36(1):161-177. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=497e43137d940ce8f0a85b06178f0517
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  49
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-11
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回