Geomorphic Features and Tectonic Significance of the Middle and North Section of Longmenshan
-
摘要: 龙门山中北段位于青藏高原东缘,该区作为高原向东扩展的前缘部位,其地形与河流水系的演化记录了高原隆升与挤压扩展及其气候环境效应的各种信息。龙门山中北段构造活动有明显差异,从中段逆冲为主转化为北段的走滑为主,本文采用定量化地貌参数从构造地貌的角度揭示了区域构造活动的差异。龙门山中北段地貌因子(坡度、地形起伏度和条带状剖面)的阶梯状分布特点,显示了高原扩展的逆冲推覆特征,在中央断裂处构造抬升作用最强,同时显示出了南北向构造活动减弱的趋势,由中段的逆冲转换为北段逆冲兼走滑的形式。北川-映秀断裂两侧流域的HI值也显示了断裂上盘高、下盘低、沿走向减弱的趋势。综合分析认为,本区构造活动是地貌演化的主控因素,龙门山中北段地形存在差异,北川-映秀断裂两侧的小流域地貌指数分析显示,构造抬升活动自南向北减弱,中段以逆冲为主,北段为逆冲兼走滑。Abstract: The study of Quantitative geomorphological parameters is a common means of tectonic geomorphology for regional tectonic activities and their evolution. The middle and northern sections of the Longmenshan are located on the eastern margin of the Qinghai-Tibet plateau as the frontier part of the plateau expanding eastward. The evolution of the topography and river system in this area records abundant information about plateau uplift and extrusion expansion and its climatic environmental effects. The stepped distribution characteristics of the geomorphic factors (slope, topographic relief, swath profiles) in the middle and northern sections of the Longmenshan suggest the thrusting characteristics of the plateau expansion. The tectonic uplift is the strongest at the central fault and shows the tendency of the tectonic activity to weaken from north and south which is converted from the thrust of the middle section to the form of the thrust and strike slip of the northern section. The HI value of the basin on both sides of the Beichuan-Yingxiu fault also shows that the hanging wall of the fracture is relatively high. Based on the comprehensive analysis, the tectonic activities in this area are the main controlling factors of geomorphological evolution. There are differences in the topography of the middle and northern sections of Longmenshan. The geomorphological index analysis of the small watersheds on both sides of the Beichuan-Yingxiu fault shows that the tectonic uplifting activity is weakened from south to north, and the middle section is reversed. Mainly, the northern section is thrust with strike-slip component.
-
Key words:
- Slope /
- Relief /
- HI value /
- Tectonic activity
-
引言
国内外地震灾害分析表明,隔震技术在提高结构抗震性能、经济效益和社会效益等方面具有显著优势,近几十年隔震技术在建筑结构与桥梁工程领域得到一定应用。但《建筑抗震设计规范》(GB 50011—2010)(中华人民共和国住房和城乡建设部等,2016)中第12.2.9条第2款规定隔震层应满足嵌固刚度比要求,此要求使隔震支墩长细比较小,须单独增设1个隔震层,增加了结构造价,在一定程度上限制了隔震技术的应用。
目前对隔震支墩长细比的研究较少,主要集中于对底部二层框架上部多塔楼底隔震结构的数值模拟与试验研究(徐忠根等,2005)、对首层薄弱层框架结构柱顶隔震性能的分析(吴应雄等,2011)、对层间隔震减震结构的理论分析和振动台试验研究(黄襄云,2008)、对近断层脉冲型地震动作用下高层建筑组合隔震结构的减震性能研究(潘钦锋等,2019)等,上述研究中模型均设置了单独的隔震层,未涉及隔震支墩长细比的研究。另外,对屋盖结构柱顶隔震技术的研究仅针对大跨度结构,得出柱顶隔震技术可应用于屋盖结构的结论(唐柏鉴等,2005),对高举架立式圆筒型储液容器柱顶隔震地震动响应的研究仅针对构筑物(孙建刚等,2018)。本文使用大型通用有限元分析软件ANSYS分别对无隔震支座、常规隔震、柱顶隔震、柱底隔震4种方案的同一建筑进行地震时程反应分析,研究隔震支墩长细比对隔震效果的影响,进而证实柱顶隔震、柱底隔震方案的可行性,从而降低隔震建筑造价,为医院、学校等多层建筑隔震设计提供经济可行性,同时也为《建筑抗震设计规范》(GB 50011—2010)的修订提供一定理论依据。
1. 工程概况
本建筑为混凝土框架结构民用建筑,共8层,层高3m,纵向5跨,跨度均为6m,横向3跨,跨度分别为6.3m、2.7m、6.3m。本建筑处于8度设防区,设计地震加速度为0.20g,地震分组为第二组,场地类别为Ⅱ类,根据《建筑抗震设计规范》(GB 50011—2010),得该场地特征周期为0.4s,属于重点设防类、乙类建筑,结构平面图如图 1所示。
2. 数值模拟分析
2.1 有限元模型
本文使用大型通用有限元分析软件ANSYS进行地震时程反应分析。本工程结构为钢筋混凝土框架结构,通过实体单元Solid65模拟。为更好地模拟地震动,用3个相互垂直的弹簧单元Combin14分别模拟普通橡胶隔震支座x、y、z方向的分量,用2个相互垂直的弹簧单元Combin40分别模拟铅芯橡胶隔震支座x、y方向的分量,用Combin14单元模拟铅芯橡胶隔震支座z方向的分量(王新敏等,2011)。建筑物有限元模型如图 2,普通隔震支座有限元模拟示意图如图 3。
无隔震支座方案为常规建筑底部无隔震支座;常规隔震方案为在底部单独增设1个隔震层,在隔震层底部安装隔震支座;柱顶隔震方案为不在首层、底部单独增设隔震层,在首层柱柱顶安装隔震支座;柱底隔震方案为不在首层、底部单独增设隔震层,在首层柱柱底安装隔震支座。
2.2 PKPM柱底压力计算结果
本文利用PKPM软件计算无隔震支座方案建筑在重力荷载代表值作用下的首层柱柱底压力,结果见表 1。
表 1 首层柱柱底压力计算结果(kN)Table 1. The bottom pressure result of the first layer's coloum on PKPM (kN)横轴 纵轴 Ⓐ Ⓑ Ⓒ Ⓓ Ⓔ Ⓕ ① 1524.6 2065.7 2083.7 2083.7 2065.7 1524.6 ② 1768.7 2301.2 2322.3 2322.3 2301.2 1768.7 ③ 1768.7 2301.2 2322.3 2322.3 2301.2 1768.7 ④ 1524.6 2065.7 2083.7 2083.7 2065.7 1524.6 2.3 有限元模型参数
柱顶隔震方案中,首层和2层柱截面尺寸为800mm×800mm,柱底隔震方案中只有底层柱截面尺寸为800mm×800mm,其他柱截面尺寸均为600mm×600mm,梁截面尺寸为300mm×500mm,板厚100mm。柱顶隔震方案中,首层和2层柱Solid65单元弹性模量取3.80×104N/mm2,柱底隔震方案中只有底层柱Solid65单元弹性模量取3.80×104N/mm2,其他柱Solid65单元弹性模量取均3.45×104N/mm2,泊松比取0.2,密度取5300kg/m3。根据重力荷载代表值作用下的柱底压力计算结果(表 1),按隔震橡胶支座最大竖向受力及外部支座扭转位移较大的原则,使用3类隔震橡胶支座,支座1为LNR(普通橡胶支座,下同)600,支座2为LRB(铅芯橡胶支座,下同)500,支座3为LRB600,支座力学参数和结构尺寸见表 2和表 3,其中,Ⓐ、Ⓕ轴选用LRB500支座,①、④轴(除与Ⓐ、Ⓕ轴相交的支座外)选用LRB600支座,其余支座选用LNR600支座(图 4),无隔震支座、常规隔震、柱顶隔震、柱底隔震4种方案单元数分别为49328、54144、49400、49400,模型底部采用固定约束。
表 2 隔震支座力学参数Table 2. The mechanics parameter of isolation bearing序号 类型 设计荷载/kN 竖向刚度/kN·mm-1 等效水平刚度/kN·mm-1 屈服前刚度/kN·mm-1 屈服后刚度/kN·mm-1 屈服力/kN 等效阻尼比/% 1 LNR600 4230 2803 0.917 2 LRB500 2945 2451 1.186 10.139 12.121 40 20.9 3 LRB600 4241 2917 1.459 0.780 0.932 63 21.9 表 3 隔震支座结构尺寸Table 3. The structure size of isolation bearing序号 类型 支座外径/mm 橡胶保护层厚度/mm 内部橡胶厚度/mm 有效直径/mm 铅芯直径/mm 不含连板高度/mm 第一形状系数 第二形状系数 连接板外形尺寸/mm 连接板厚度/mm 螺栓直径/mm 螺栓个数 支座高度/mm 1 LNR600 620 10 118.9 600 241.3 34.8 5.0 700 25.0 M36 4 291.3 2 LRB500 520 10 98.6 500 80 213.0 36.8 5.1 600 22.0 M30 4 257.0 3 LRB600 620 10 118.9 600 100 241.3 36.6 5.0 700 25.0 M36 4 291.3 3. 有限元分析
3.1 地震动时程反应分析
用时程分析法分析结构地震响应时,除给出必要的结构参数外,还应确定相应的输入地震动时程。地震动时程影响因素较多,在相同烈度下,同一场地类别的观测点观测到的地震加速度记录在峰值、波形、频谱和持续时间上不同,即使是同一震源先后两次相同震级的地震,同一观测点观测到的地震加速度记录也不同(杨溥等,2000;王丽娟,2013)。但只要合理选择地震动主要参数(幅值、频谱、持时),时程分析结果较可靠。因此,选择合适的地震动参数,并调整计算结果尤为重要(兰雁,2012;李建亮等,2011)。
《建筑抗震设计规范》(GB 50011—2010)中第5.1.2条规定,采用时程分析法时,应按建筑场地类别和设计地震分组选用实际强震记录和人工模拟的加速度时程曲线,其中实际强震记录数量不应少于总数的2/3。当取3组加速度时程曲线输入时,计算结果宜取时程法包络值和振型分解反应谱法的较大值。《建筑抗震设计规范》(GB 50011—2010)第5.1.2条规定,当结构采用三维空间模型需要双向(2个水平方向)或三向(2个水平方向和1个竖向)地震动输入时,其加速度最大值通常按1(水平方向1):0.85(水平方向2):0.65(竖向)的比例调整。
3.2 地震动时程反应分析结果
本工程分别采用罕遇地震水平和设防地震水平3条不同地震动时程进行时程反应分析,研究建筑遭遇罕遇地震和设防地震时的反应情况,输入的地震动时程分别为由设计反应谱得到的人工地震动时程、相同场地类别并经过调幅的El-Centro地震动时程及唐山地震动时程。
调幅后罕遇地震水平SPECTRUM地震动、唐山地震动、El-Centro地震动时程曲线及3条地震动时程反应谱曲线、平均反应谱曲线和规范反应谱曲线的对比如图 5。《建筑抗震设计规范》(GB 50011—2010)中第5.1.2条规定,输入的地震加速度时程曲线有效持续时间一般从首次达到该时程曲线最大峰值的10%那一刻算起,到最后一刻达到最大峰值的10%为止;无论是实际的强震记录还是人工模拟波形,有效持续时间一般为结构基本周期的5—10倍。由图 5(a)、5(b)、5(c)可知,3条地震动时程有效持续时间均达到建筑自身结构基本周期(2.32s)的5—10倍,满足规定。由图 5(d)可知,各地震动时程平均反应谱曲线与规范反应谱曲线较接近,满足要求。由此可知,这3条地震动时程可用于本工程地震动时程输入。
输入调幅后的罕遇地震水平唐山地震动时程后无隔震支座、常规隔震、柱顶隔震、柱底隔震4种方案建筑物纵向第3跨最高处中部纵向位移时程曲线如图 6。由图 6可知,遭遇地震时,无隔震支座方案建筑物摆动频率较大,使用隔震支座后,隔震支座使整个建筑物刚度变小,摆动频率降低,周期变大,减小了地震对结构、非结构构件、内部附属物品的损坏;隔震建筑物顶部位移小于无隔震支座建筑物,有利于减小地震对结构、非结构构件、内部附属物品的损坏;常规隔震方案与柱顶隔震方案、柱底隔震方案建筑物顶部位移反应基本相同,说明对于建筑物顶部位移反应而言,隔震支墩长细比基本能达到普通层柱长细比,可根据建筑物自身需求决定采用柱顶隔震方案或柱底隔震方案。
输入调幅后的罕遇地震水平El-Centro地震动时程后无隔震支座、常规隔震、柱顶隔震、柱底隔震4种方案建筑物纵向第3跨最高处中部最大纵向位移时建筑的纵向位移云图如图 7,由图 7可知,遭遇地震时,无隔震支座方案建筑物运动方式为左右摆动,使用隔震支座后,支座上部建筑物运动方式变为平动,大部分位移由隔震支座承担,建筑自身层间相对位移很小,隔震支座消耗了大部分地震能量,可减小地震对结构、非结构构件、内部附属物品的损坏;常规隔震、柱顶隔震、柱底隔震3种方案建筑物位移反应相差较小,其中柱顶隔震方案建筑物位移相对较小,仅柱顶隔震方案建筑物首层柱位移较大,不利于装修和非结构构件的安装,加大了地震发生时首层顶部非结构构件和附属构件脱落致人伤亡的危险,综合比较得知,隔震支墩长细比基本能达到普通层柱长细比,出于安全考虑,应优选柱底隔震方案。
输入罕遇地震和设防地震水平地震动时程后,柱顶隔震方案和柱底隔震方案与常规隔震方案建筑物隔震支座纵向和横向最大位移比见表 4,由表 4可知,对于铅芯橡胶支座,遭遇罕遇地震和设防地震水平地震动时,柱顶隔震方案和柱底隔震方案建筑物隔震支座纵向和横向位移均小于常规隔震方案,比值为0.73—0.99;对于普通橡胶支座,遭遇罕遇地震和设防地震水平地震动时,柱顶隔震方案和柱底隔震方案建筑物隔震支座纵向和横向位移均大于常规隔震方案,比值为1.15—1.43。可考虑将普通橡胶支座全部换成铅芯橡胶支座或更换大一号的普通橡胶支座避免遭遇地震时可能出现的破坏。综上所述,隔震支墩长细比基本能达到普通层柱长细比。
表 4 柱顶隔震方案和柱底隔震方案与常规隔震方案建筑物隔震支座位移比Table 4. The isolation bearing's displacement ratio of the column's top and bottom isolation project with the conventional isolation project横轴 工况 支座位置 方向 纵轴 Ⓐ Ⓑ Ⓒ Ⓓ Ⓔ Ⓕ ① 罕遇地震 柱顶 纵向 0.91 0.87 0.87 0.87 0.87 0.92 横向 0.93 0.88 0.88 0.88 0.88 0.92 柱底 纵向 0.98 0.99 0.99 0.99 0.99 0.91 横向 0.99 0.92 0.93 0.92 0.91 0.89 设防地震 柱顶 纵向 0.91 0.87 0.87 0.87 0.87 0.92 横向 0.93 0.88 0.88 0.88 0.88 0.92 柱底 纵向 0.97 0.99 0.98 0.99 0.99 0.98 横向 0.98 0.91 0.92 0.91 0.90 0.88 ② 罕遇地震 柱顶 纵向 0.91 1.15 1.15 1.15 1.15 0.92 横向 0.91 1.17 1.17 1.17 1.17 0.91 柱底 纵向 0.90 1.33 1.33 1.33 1.33 0.92 横向 0.99 1.44 1.43 1.42 1.42 0.96 设防地震 柱顶 纵向 0.91 1.15 1.15 1.15 1.15 0.92 横向 0.91 1.17 1.17 1.17 1.17 0.91 柱底 纵向 0.89 1.33 1.33 1.33 1.33 0.91 横向 0.99 1.43 1.43 1.42 1.41 0.95 ③ 罕遇地震 柱顶 纵向 0.91 1.15 1.15 1.15 1.15 0.91 横向 0.91 1.16 1.16 1.16 1.16 0.91 柱底 纵向 0.90 1.33 1.33 1.33 1.33 0.91 横向 0.99 1.43 1.43 1.43 1.41 0.95 设防地震 柱顶 纵向 0.91 1.15 1.15 1.15 1.15 0.91 横向 0.91 1.16 1.16 1.16 1.16 0.91 柱底 纵向 0.89 1.32 1.32 1.33 1.33 0.91 横向 0.99 1.42 1.42 1.42 1.41 0.95 ④ 罕遇地震 柱顶 纵向 0.91 0.87 0.86 0.86 0.86 0.91 横向 0.93 0.89 0.89 0.89 0.89 0.93 柱底 纵向 0.88 0.88 0.88 0.88 0.88 0.90 横向 0.97 0.92 0.91 0.91 0.90 0.89 设防地震 柱顶 纵向 0.84 0.87 0.86 0.86 0.86 0.91 横向 0.93 0.89 0.89 0.89 0.89 0.93 柱底 纵向 0.80 0.87 0.87 0.87 0.87 0.89 横向 0.96 0.91 0.90 0.90 0.89 0.88 输入罕遇地震和设防地震水平地震动时程后,柱顶隔震方案和柱底隔震方案与常规隔震方案建筑物每层纵向和横向最大层间位移角比见表 5,由表 5可知,遭遇罕遇地震和设防地震水平地震动时,柱顶隔震方案和柱底隔震方案与常规隔震方案建筑物相比,横向和纵向层间位移角增幅较小,层间位移角比为0.82—1.06,这是因为在采用柱顶隔震方案和柱底隔震方案的建筑物中,对隔震支座相邻上下层柱混凝土尺寸、强度等级和钢筋等进行了一定优化,使其抗变形能力增强,在一定程度上抵消了由于隔震支墩柔性、位移变形较大造成的支座相邻上下层层间位移角增大,使其与常规隔震方案建筑物层间位移角相比未发生太大变化;另外,纵向层间位移角比值基本小于横向层间位移角比值,这是由于纵向层间刚度大于横向层间刚度,使其受隔震方案变化的影响偏小。综上所述,隔震支墩长细比基本能达到普通层柱长细比。
表 5 柱顶隔震方案和柱底隔震方案与常规隔震方案建筑物层间位移角比Table 5. The displacement angle's ratio between layers of the column's top and bottom isolation project with the conventional isolation project层数 罕遇地震 设防地震 柱底 柱顶 柱底 柱顶 纵向 横向 纵向 横向 纵向 横向 纵向 横向 1 1.00 1.05 1.06 1.03 1.04 1.00 1.01 1.03 2 1.04 1.05 1.03 1.05 1.02 1.01 1.02 1.02 3 0.87 1.00 0.92 1.01 0.96 1.01 0.91 1.01 4 0.83 1.02 0.87 0.98 0.97 0.98 0.85 0.92 5 0.82 1.01 0.84 0.97 0.99 0.97 0.89 0.95 6 0.82 1.04 0.85 1.04 1.00 0.99 0.87 0.96 7 0.83 1.01 0.90 1.02 1.00 0.89 0.88 1.01 8 0.82 1.01 0.95 1.01 1.02 1.02 0.82 0.97 输入罕遇地震和设防地震水平地震动时程后,柱顶隔震方案和柱底隔震方案与常规隔震方案建筑物每层纵向和横向最大层间剪力比见表 6,由表 6可知,遭遇罕遇地震和设防地震水平地震动时,柱顶隔震方案建筑物首层位移基本由隔震支座承担,隔震支墩位移较小,基本不受剪力作用,因此剪力比为0,2层层间剪力比为1.01—1.03;柱底隔震方案建筑物首层层间剪力增幅较小,层间剪力比为1.01—1.05,这是因为柱顶隔震方案和柱底隔震方案建筑物中,对隔震支座相邻上下层柱混凝土尺寸、强度等级和钢筋等进行了一定优化,使其抗剪能力增强,在一定程度上抵消了由于隔震支墩柔性、位移变形较大造成的隔震支座相邻上下层层间剪力增大,使其与常规隔震方案建筑物层间剪力相比未发生太大变化;其他层层间剪力由于远离隔震支座所在层,在未进行柱相关参数优化的基础上,层间剪力比为0.85—1.05。综上所述,隔震支墩长细比基本能达到普通层柱长细比。
表 6 柱顶隔震方案和柱底隔震方案与常规隔震方案建筑物层间剪力比Table 6. The shear's ratio between layers of the column's top and bottom isolation project with the conventional isolation project层数 罕遇地震 设防地震 柱底 柱顶 柱底 柱顶 纵向 横向 纵向 横向 纵向 横向 纵向 横向 1 1.02 1.05 0.00 0.00 1.01 1.04 0.00 0.00 2 0.89 0.96 1.01 1.03 1.05 0.90 1.02 1.03 3 0.93 0.87 0.98 1.03 0.96 0.85 1.01 0.92 4 1.05 1.04 1.02 0.91 1.04 0.87 0.89 0.85 5 0.95 0.90 0.94 0.94 0.95 0.98 0.96 0.87 6 0.86 1.04 0.98 0.88 0.98 0.96 0.91 0.86 7 1.00 0.91 0.94 1.01 1.03 0.92 0.85 0.85 8 0.99 1.01 1.01 0.87 1.01 0.87 0.98 0.99 4. 结论
利用ANSYS软件分别对采用无隔震支座、常规隔震、柱顶隔震、柱底隔震4种方案的相同建筑进行罕遇地震和设防地震水平地震动时程反应分析,得出以下结论:
(1) 由于地震随机性很强,地面运动影响因素较多,同一建筑在输入相同场地条件和幅值的不同地震动时程后,其位移、应力等差别较大。
(2) 遭遇地震时,无隔震支座建筑物摆动频率较大,增设隔震支座后使整个建筑物摆动频率降低,周期变大;隔震建筑物大部分位移由隔震支座承担,建筑自身层间相对位移较小,减小了地震对结构、非结构构件、内部附属物品的损坏;3种隔震方案建筑物位移反应相差较小,柱顶隔震方案建筑物位移相对较小。
(3) 遭遇罕遇地震和设防地震水平地震动时,对于铅芯橡胶支座,柱顶隔震方案和柱底隔震方案建筑物隔震支座位移均小于常规隔震方案;对于普通橡胶支座,柱顶隔震方案和柱底隔震方案建筑物隔震支座位移均大于常规隔震方案,可考虑将普通橡胶支座全部换成铅芯橡胶支座或更换大一号的普通橡胶支座避免遭遇地震时可能出现的破坏。
(4) 遭遇罕遇地震和设防地震水平地震动时,柱顶隔震方案和柱底隔震方案建筑物层间位移角和层间剪力与常规隔震方案相比无实质性增大,这是因为对隔震支座相邻上下层柱混凝土尺寸、强度等级和钢筋等进行了一定优化,使其抗变形和抗剪能力增强,使其与常规隔震方案建筑物层间位移角和层间剪力相比未发生太大变化,使隔震支墩长细比基本能达到普通层柱长细比。
(5) 当隔震支墩长细比不能达到普通层柱长细比时,可通过更换大一号隔震橡胶支座或加装阻尼器增加地震发生时消耗的地震能量,以此减少隔震支座位移、层间位移角和层间剪力,使隔震支墩长细比能达到普通层柱长细比。由此可见,柱顶隔震、柱底隔震方案可行,同时推动隔震技术在多层建筑特别是学校、医院等建筑中的应用,提高隔震建筑经济性,也为《建筑抗震设计规范》(GB 50011—2010)的修订提供一定理论依据。
-
图 2 面积-高程积分曲线示意图(Singh等,2008)
Figure 2. Schematic diagram of area-elevation integral curve (fromh Singh et. al., 2008)
-
常直杨, 王建, 白世彪等. 2014.基于DEM的岷江上游流域构造活动强度分析.地球信息科学学报, 16(4):568-574. http://d.old.wanfangdata.com.cn/Periodical/dqxxkx201404009 常直杨, 孙伟红, 王建等. 2015.数字高程模型在构造地貌形态分析中的应用现状及展望.南京师大学报(自然科学版), 38(4):129-136. doi: 10.3969/j.issn.1001-4616.2015.04.023 陈社发, 邓起东, 赵小麟等. 1994.龙门山中段推覆构造带及相关构造的演化历史和变形机制(二).地震地质, 16(4):413-421. http://www.cnki.com.cn/Article/CJFDTotal-DZDZ404.015.htm 陈彦杰, 郑光佑, 宋国城. 2005.面积尺度与空间分布对流域面积高程积分及其地质意义的影响(英文).地理学报, 39:53-59. 樊春, 王二七, 王刚等. 2008.龙门山断裂带北段晚新近纪以来的右行走滑运动及其构造变换研究——以青川断裂为例.地质科学, 43(3):417-433. doi: 10.3321/j.issn:0563-5020.2008.03.001 何祥丽, 张绪教, 何泽新. 2014.基于构造地貌参数的新构造运动研究进展与思考.现代地质, 28(1):119-130. doi: 10.3969/j.issn.1000-8527.2014.01.011 贾营营, 付碧宏, 王岩等. 2010.青藏高原东缘龙门山断裂带晚新生代构造地貌生长及水系响应.第四纪研究, 30(4):825-836. doi: 10.3969/j.issn.1001-7410.2010.04.17 姜大伟, 张世民, 李伟等. 2018.龙门山南段前陆区晚第四纪构造变形样式.地球物理学报, 61(5):1949-1969. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201805024 李传友, 宋方敏, 冉勇康. 2004.龙门山断裂带北段晚第四纪活动性讨论.地震地质, 26(2):248-258. doi: 10.3969/j.issn.0253-4967.2004.02.007 李奋生, 赵国华, 李勇等. 2015.龙门山地区水系发育特征及其对青藏高原东缘隆升的指示.地质论评, 61(2):345-355. http://d.old.wanfangdata.com.cn/Periodical/dzlp201502009 李勇, 周荣军, Densmore A.L.等. 2006.青藏高原东缘龙门山晚新生代走滑-逆冲作用的地貌标志.第四纪研究, 26(1):40-51. doi: 10.3321/j.issn:1001-7410.2006.01.006 梁明剑, 郭红梅, 李大虎等. 2013.2013年四川芦山7.0级地震发震构造机理及青衣江上游流域地貌的响应.地学前缘, 20(6):21-28. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201306011 梁明剑, 周荣军, 闫亮等. 2014.青海达日断裂中段构造活动与地貌发育的响应关系探讨.地震地质, 36(1):28-38. doi: 10.3969/j.issn.0253-4967.2014.01.003 梁欧博, 任俊杰, 吕延武. 2018.涪江流域河流地貌特征对虎牙断裂带活动性的响应.地震地质, 40(1):42-56. doi: 10.3969/j.issn.0253-4967.2018.01.004 林茂炳, 吴山. 1991.龙门山推覆构造变形特征.成都地质学院学报, 18(1):46-55. http://d.old.wanfangdata.com.cn/Periodical/cdlgxyxb200103003 刘静, 张智慧, 文力等. 2008.汶川8级大地震同震破裂的特殊性及构造意义——多条平行断裂同时活动的反序型逆冲地震事件.地质学报, 82(12):1707-1722. doi: 10.3321/j.issn:0001-5717.2008.12.007 马保起, 苏刚, 侯治华等. 2005.利用岷江阶地的变形估算龙门山断裂带中段晚第四纪滑动速率.地震地质, 27(2):234-242. doi: 10.3969/j.issn.0253-4967.2005.02.006 南希, 李爱农, 景金城. 2017.中国山地起伏度计算中地形自适应滑动窗口获取与验证.地理与地理信息科学, 33(4):34-39. doi: 10.3969/j.issn.1672-0504.2017.04.006 邵崇建, 李勇, 赵国华等. 2015.基于面积-高程积分对龙门山南段山前河流的构造地貌研究.现代地质, 29(4):727-737. doi: 10.3969/j.issn.1000-8527.2015.04.002 苏琦, 袁道阳, 谢虹. 2016.祁连山-河西走廊黑河流域地貌特征及其构造意义.地震地质, 38(3):560-581. doi: 10.3969/j.issn.0253-4967.2016.03.005 苏琦, 袁道阳, 谢虹. 2017.祁连山东段石羊河流域及邻区地貌特征及其构造意义.地质论评, 63(1):7-20. http://d.old.wanfangdata.com.cn/Periodical/dzlp201701002 徐锡伟, 闻学泽, 叶建青等. 2008.汶川MS 8.0地震地表破裂带及其发震构造.地震地质, 30(3):597-629. http://d.old.wanfangdata.com.cn/Periodical/dzdz200803003 杨晓平, 蒋溥, 宋方敏等. 1999.龙门山断裂带南段错断晚更新世以来地层的证据.地震地质, 21(4):341-345. doi: 10.3969/j.issn.0253-4967.1999.04.007 姚琪, 邢会林, 徐锡伟等. 2012.断裂两盘岩性差异对汶川地震的影响.地球物理学报, 55(11):3634-3647. doi: 10.6038/j.issn.0001-5733.2012.11.012 张会平, 杨农, 刘少峰等. 2006a.数字高程模型(DEM)在构造地貌研究中的应用新进展.地质通报, 25(6):660-669. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200606002 张会平, 杨农, 张岳桥等. 2006b.岷江水系流域地貌特征及其构造指示意义.第四纪研究, 26(1):126-135. http://d.old.wanfangdata.com.cn/Periodical/dsjyj200601016 赵洪壮, 李有利, 杨景春. 2010.北天山流域河长坡降指标与Hack剖面的新构造意义.北京大学学报(自然科学版), 46(2):237-244. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjdxxb201002012 郑光佑. 2002.台湾西部麓山带前缘流域面积高度积分之构造意义研究.台南:国立高雄师范大学. 周荣军, 李勇, Densmore A.L.等. 2006.青藏高原东缘活动构造.矿物岩石, 26(2):40-51. doi: 10.3969/j.issn.1001-6872.2006.02.007 Alipoor R., Poorkermani M., Zare M., et al.. 2011. Active tectonic assessment around Rudbar Lorestan dam site, High Zagros Belt (SW of Iran). Geomorphology, 128(1-2):1-14. doi: 10.1016/j.geomorph.2010.10.014 Burchiel B. C., Royden L. H., van der Hilst R. D., et al.. 2008. A geological and geophysical context for the Wenchuan earthquake of 12 May 2008, Sichuan. People's Republic of China, GSA Today, 18(7):4-11. doi: 10.1080-00952990903060119/ Densmore A. L., Ellis M. A., Li Y., et al.. 2007. Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan Plateau. Tectonics, 26(4):TC4005. doi: 10.1029-2006TC001987/ England P., Molnar P.. 1990. Surface uplift, uplift of rocks, and exhumation of rocks. Geology, 18(12):1173-1177. doi: 10.1130/0091-7613(1990)018<1173:SUUORA>2.3.CO;2 Gao M. X., Zeilinger G., Xu X. W., et al.. 2013. DEM and GIS analysis of geomorphic indices for evaluating recent uplift of the northeastern margin of the Tibetan Plateau, China. Geomorphology, 190:61-72. doi: 10.1016/j.geomorph.2013.02.008 Hack J. T.. 1973. Stream-profile analysis and stream-gradient index. Journal of Research of the U.S. Geological Survey, 1(4):421-429. http://cn.bing.com/academic/profile?id=ebc62280da7aebf0286d5ab2e8e1845c&encoded=0&v=paper_preview&mkt=zh-cn Hartshorn K., Hovius N., Dade W. B., et al.. 2002. Climate-Driven bedrock incision in an active mountain belt. Science, 297(5589):2036-2038. doi: 10.1126/science.1075078 Hijmans R. J., Cameron S. E., Parra J. L., et al.. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15):1965-1978. doi: 10.1002/joc.1276 Kirby E., Whipple K. X., Tang W. Q., et al.. 2003. Distribution of active rock uplift along the eastern margin of the Tibetan Plateau:inferences from bedrock channel longitudinal profiles. Journal of Geophysical Research:Solid Earth, 108(B4):2217. doi: 10.1029-2001JB000861/ Kirby E., Whipple K., Harkins N.. 2008. Topography reveals seismic hazard. Nature Geoscience, 1(8):485-487. doi: 10.1038/ngeo265 Kirby E., Whipple K. X.. 2012. Expression of active tectonics in erosional landscapes. Journal of Structural Geology, 44:54-75. doi: 10.1016/j.jsg.2012.07.009 Pike R. J., Wilson S. E.. 1971. Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis. GSA Bulletin, 82(4):1079-1084. doi: 10.1130/0016-7606(1971)82[1079:ERHIAG]2.0.CO;2 Scherler D., Bookhagen B., Strecker M. R.. 2014. Tectonic control on 10Be-derived erosion rates in the Garhwal Himalaya, India. Journal of Geophysical Research:Earth Surface, 119(2):83-105. doi: 10.1002/2013JF002955 Schmidt K. M., Montgomery D. R.. 1995. Limits to relief. Science, 270(5236):617-620. doi: 10.1126/science.270.5236.617 Singh O., Sarangi A., Sharma M. C.. 2008. Hypsometric integral estimation methods and its relevance on erosion status of North-Western Lesser Himalayan Watersheds. Water Resources Management, 22(11):1545-1560. doi: 10.1007/s11269-008-9242-z Strahler A. N.. 1952. Hypsometric (area-altitude) analysis of erosional topography. GSA Bulletin, 63(11):1117-1142. doi: 10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2 Tan X. B., Liu Y. D., Lee Y. H., et al.. 2019. Parallelism between the maximum exhumation belt and the Moho ramp along the eastern Tibetan Plateau margin: coincidence or consequence? Earth and Planetary Science Letters, 507: 73-84. Tian Y. T., Kohn B. P., Gleadow A. J. W., et al.. 2013. Constructing the Longmen Shan eastern Tibetan Plateau margin:insights from low-temperature thermochronology. Tectonics, 32(3):576-592. doi: 10.1002/tect.20043 Willett, S. D., Brandon M. T.. 2002. On steady states in mountain belts. Geology, 30(2):175-178. doi: 10.1130-0091-7613(2002)030-0175-OSSIMB-2.0.CO%3b2/ Zhang H. P., Liu S. F., Yang N., et al.. 2006. Geomorphic characteristics of the Minjiang drainage basin (eastern Tibetan Plateau) and its tectonic implications:new insights from a digital elevation model study. Island Arc, 15(2):239-250. doi: 10.1111/j.1440-1738.2006.00524.x Zhang H. P., Zhang P. Z., Kirby E., et al.. 2011. Along-strike topographic variation of the Longmen Shan and its significance for landscape evolution along the eastern Tibetan Plateau. Journal of Asian Earth Sciences, 40(4):855-864. doi: 10.1016/j.jseaes.2010.05.015 -