• ISSN 1673-5722
  • CN 11-5429/P

丽江-小金河断裂全新世滑动速率研究

郜宇 丁锐 张世民 任俊杰

郜宇, 丁锐, 张世民, 任俊杰. 丽江-小金河断裂全新世滑动速率研究[J]. 震灾防御技术, 2019, 14(3): 617-627. doi: 10.11899/zzfy20190314
引用本文: 郜宇, 丁锐, 张世民, 任俊杰. 丽江-小金河断裂全新世滑动速率研究[J]. 震灾防御技术, 2019, 14(3): 617-627. doi: 10.11899/zzfy20190314
Gao Yu, Ding Rui, Zhang Shimin, Ren Junjie. Slip Rate of Lijiang-Xiaojinhe Fault in the Holocene[J]. Technology for Earthquake Disaster Prevention, 2019, 14(3): 617-627. doi: 10.11899/zzfy20190314
Citation: Gao Yu, Ding Rui, Zhang Shimin, Ren Junjie. Slip Rate of Lijiang-Xiaojinhe Fault in the Holocene[J]. Technology for Earthquake Disaster Prevention, 2019, 14(3): 617-627. doi: 10.11899/zzfy20190314

丽江-小金河断裂全新世滑动速率研究

doi: 10.11899/zzfy20190314
基金项目: 

国家自然科学基金 41272234

国家自然科学基金 41572193

中国地震局地壳应力研究所中央级公益性科研院所基本科研业务专项 ZDJ2017-24

城市活断层探测与地震危险性评价项目——丽江-小金河断裂(丽江盆地隐伏段)地质填图和地震行业专项 201108001

详细信息
    作者简介:

    郜宇,男,生于1993年。硕士研究生。研究方向:活动构造。E-mail:771764136@qq.com

    通讯作者:

    张世民, 男, 生于1965年。研究员。主要从事活动构造、构造地貌等方面的研究。E-mail:zhangshimin@263.net

Slip Rate of Lijiang-Xiaojinhe Fault in the Holocene

  • 摘要: 丽江-小金河断裂与锦屏山断裂共同控制着青藏高原东南边界,研究该断裂的滑动速率有助于理解青藏高原东南缘区域变形模式。本文通过高分辨率遥感影像解译与野外地质调查,发现该断裂错断了一系列河流阶地与洪积扇,且以左旋走滑为主兼具倾滑分量。通过无人机断错地貌测量与碳同位素断代,获得红星-尖山营断裂段全新世左旋走滑速率为(3.32±0.22)mm/a,垂直滑动速率为(0.35±0.02)mm/a;汝南-南溪断裂段北支全新世左旋走滑速率为(2.37±0.20)mm/a。
  • 图  1  研究区断层分布

    Figure  1.  Fault distribution map of the study area

    图  2  丽江-小金河断裂平面图(Google Earth影像)

    Figure  2.  Spatial distribution of Lijiang-Xiaojinhe fault (after Google Earth image)

    图  3  丽江-小金河断裂沿线冲沟位错

    Figure  3.  Deflections of gullies across the Lijiang-Xiaojinhe fault

    图  4  断错位移量测量误差示意(Gold等, 2011)

    Figure  4.  Schematic diagram of measurement error of fault

    图  5  旦读村被左旋错断的冲沟

    (a) Google Earth影像(箭头为断层槽谷); (b)无人机航拍影像

    Figure  5.  Left laterally gully offset across the fault near Dandu village

    图  6  旦读村错断河流阶地

    Figure  6.  Offset of river terraces near Dandu village

    图  7  尖山营左旋错断的冲沟

    Figure  7.  Left laterally gully offset across the fault near Jianshanying village

    图  8  尖山营错断河流阶地与冲积扇

    Figure  8.  Offsets of river terraces and fans near Janshanying village

    图  9  尖山营河流阶地与洪积扇剖面

    Figure  9.  Terrace and alluvial fan profile near Janshanying village

    表  1  无人机现场作业参数

    Table  1.   UAV field operation parameters

    编号 位置 飞行高度/m 照片数 图像面积/km2 点云密度/m3 图像分辨率/cm 航向重叠率/% 旁向重叠率/%
    1 旦读 90 214 1.05 8.91 6.61 80 65
    2 尖山营 70 50 0.21 20.3 5.13 80 65
    下载: 导出CSV
  • 程佳,徐锡伟,甘卫军等. 2012.青藏高原东南缘地震活动与地壳运动所反映的块体特征及其动力来源.地球物理学报,55(4):1198-1212. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201204016
    丁锐,任俊杰,张世民等. 2018.丽江-小金河断裂中段晚第四纪古地震历史.地震地质,40(3):622-640. http://d.old.wanfangdata.com.cn/Periodical/dzdz201803009
    罗浩,何文贵,王定伟等. 2013.祁连山昌马断裂晚更新世滑动速率.地震地质,35(4):765-777. http://d.old.wanfangdata.com.cn/Periodical/dzdz201304007
    向宏发,徐锡伟,虢顺民等. 2002.丽江-小金河断裂第四纪以来的左旋逆推运动及其构造地质意义——陆内活动地块横向构造的屏蔽作用.地震地质,24(2):188-198. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz200202006
    徐锡伟,闻学泽,郑荣章等. 2003.川滇地区活动块体最新构造变动样式及其动力来源.中国科学(D辑),33(S1):151-162. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd2003z1017
    许志琴,李化启,侯立炜等. 2007.青藏高原东缘龙门-锦屏造山带的崛起——大型拆离断层和挤出机制.地质通报,26(10):1262-1276. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200710005
    张培震,李传友,毛凤英. 2008.河流阶地演化与走滑断裂滑动速率.地震地质,30(1):44-57. http://d.old.wanfangdata.com.cn/Periodical/dzdz200801004
    Bai M. K., Chevalier M. L., Pan J. W., et al.. 2018. Southeastward increase of the late Quaternary slip-rate of the Xianshuihe fault, eastern Tibet. Geodynamic and seismic hazard implications. Earth and Planetary Science Letters, 485:19-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=52c4e98960ea37262ccfe7f0c5b74cbc
    Behr, W. M., Rood, D. H., Fletcher, K. E., et al.. 2010. Uncertainties in slip-rate estimates for the Mission Creek strand of the southern San Andreas fault at Biskra Palms Oasis, southern California. GSA Bulletin, 122(9-10):1360-1377. doi: 10.1130/B30020.1
    Burbank D. W., Anderson R. S.. 2012. Tectonic geomorphology. 2nd ed. Chichester:Wiley.
    Burchfiel B. C., Chen Z. L., Liu Y., et al.. 1995. Tectonics of the Longmen Shan and adjacent regions, central China. International Geology Review, 37(8):661-735. doi: 10.1080/00206819509465424
    Burchfiel B. C., Chen Z.. 2013. Tectonics of the southeastern Tibetan Plateau and its adjacent foreland. Boulder:Geological Society of America.
    Cowgill E.. 2007. Impact of riser reconstructions on estimation of secular variation in rates of strike-slip faulting:Revisiting the Cherchen River site along the Altyn Tagh Fault, NW China. Earth and Planetary Science Letters, 254(3-4):239-255. doi: 10.1016/j.epsl.2006.09.015
    Gold R. D., Cowgill E., Arrowsmith J. R., et al.. 2011. Faulted terrace risers place new constraints on the late Quaternary slip rate for the central Altyn Tagh fault, northwest Tibet. GSA Bulletin, 123(5-6):958-978. doi: 10.1130/B30207.1
    Hetzel R., Hampel A., Gebbeken P., et al.. 2019. A constant slip rate for the western Qilian Shan frontal thrust during the last 200 ka consistent with GPS-derived and geological shortening rates. Earth and Planetary Science Letters, 509:100-113. doi: 10.1016/j.epsl.2018.12.032
    Shen Z K, Lü J, Wang M, et al.. 2005. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. J Geophys Res, 110:B11409. doi: 10.1029-2004JB003421/
    Wells D. L., Coppersmith K. J.. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4):974-1002. http://cn.bing.com/academic/profile?id=150c7e5c280a023d24460e3ba759c397&encoded=0&v=paper_preview&mkt=zh-cn
    Zhang P. Z., Molnar P., Xu X. W.. 2007. Late Quaternary and present-day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan Plateau. Tectonics, 26(5):TC5010. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d97ba2abed03cee284c3d9206a85a690
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  22
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-26
  • 刊出日期:  2019-09-01

目录

    /

    返回文章
    返回