• ISSN 1673-5722
  • CN 11-5429/P

室内管道系统抗震研究综述

刘志斌 郭恩栋 李倩 李玉芹

刘志斌, 郭恩栋, 李倩, 李玉芹. 室内管道系统抗震研究综述[J]. 震灾防御技术, 2019, 14(3): 591-599. doi: 10.11899/zzfy20190312
引用本文: 刘志斌, 郭恩栋, 李倩, 李玉芹. 室内管道系统抗震研究综述[J]. 震灾防御技术, 2019, 14(3): 591-599. doi: 10.11899/zzfy20190312
Liu Zhibin, Guo Endong, Li Qian, Li Yuqin. A Review of Study on Seismic Performance of Indoor Piping System[J]. Technology for Earthquake Disaster Prevention, 2019, 14(3): 591-599. doi: 10.11899/zzfy20190312
Citation: Liu Zhibin, Guo Endong, Li Qian, Li Yuqin. A Review of Study on Seismic Performance of Indoor Piping System[J]. Technology for Earthquake Disaster Prevention, 2019, 14(3): 591-599. doi: 10.11899/zzfy20190312

室内管道系统抗震研究综述

doi: 10.11899/zzfy20190312
基金项目: 

中国地震局工程力学研究所基本科研业务费专项 2018A02

详细信息
    作者简介:

    刘志斌, 男, 生于1994年。硕士研究生。主要从事生命线工程抗震研究。E-mail:liuzhibin312@163.com

    通讯作者:

    郭恩栋, 男, 生于1966年。研究员。主要从事生命线工程抗震研究。E-mail:iemged@263.net

A Review of Study on Seismic Performance of Indoor Piping System

  • 摘要: 根据最新震害统计资料发现,非结构构件在地震中造成的经济损失远大于结构构件。非结构构件按照地震反应特征可分为位移敏感型构件和加速度敏感型构件。其中,位移敏感型构件的破坏多受层间位移角控制,主要采用拟静力试验进行研究;加速度敏感型构件的破坏多受楼面加速度的控制,主要采用振动台试验进行研究。室内管道系统是非结构构件的重要组成部分,室内管道系统中的立管和水平管分别属于位移敏感型和加速度敏感型构件。本文系统地论述了近年来国内外学者开展的关于室内管道系统的抗震研究工作,并对室内管道系统下一步的研究工作提出了建议。
  • 图  1  不同建筑类型投资分布比例

    Figure  1.  Distribution of investment proportion with different construction types

  • 国巍, 李宏男, 柳国环, 2010.非线性建筑物上的附属结构响应分析.计算力学学报, 27(3):476-481. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jslxxb201003016
    韩淼, 秦丽, 2003.多点连接二次结构地震响应的研究方法.北京建筑工程学院学报, 19(4):13-17. doi: 10.3969/j.issn.1004-6011.2003.04.003
    韩淼, 王亮, 2005.考虑耦联影响的二次结构体系减震分析.世界地震工程, 21(1):42-46. doi: 10.3969/j.issn.1007-6069.2005.01.008
    贺思维, 曲哲, 叶良浩, 2018.建筑常用给水管道地震易损性试验研究.土木工程学报, 51(10):11-19 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tmgcxb201810002
    黄宝锋, 卢文胜, 2009.非结构构件地震破坏机理及抗震性能分析.见: 第18届全国结构工程学术会议论文集.广州: 中国力学学会.
    秦权, 聂宇, 1997.非结构件和设备的抗震设计楼面谱.清华大学学报(自然科学版), 37(6):82-86.
    尚庆学, 李吉超, 2018a.消防管线卡箍接头抗震性能试验研究.地震工程与工程振动, 38(6):86-94. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzgcygczd201806011
    尚庆学, 王涛, 2018b隔震建筑柔性管线的抗震性能试验研究.自然灾害学报, 27(1):50-60. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzhxb201801007
    尚庆学, 李泽, 刘瑞康等, 2018c.管线系统抗震支架力学试验研究.工程力学, 35(S1):120-125, 133. http://d.old.wanfangdata.com.cn/Periodical/gclx2018z1020
    苏经宇, 周锡元, 樊水荣等, 1990.计算楼层上设备地震作用的方法.地震工程与工程振动, 10(2):65-72.
    孙磊, 2007.高层建筑中燃气管道抗震性能研究.上海: 同济大学.
    滕睿, 徐国贤, 张锡朋等, 2018.非结构构件振动台试验楼面响应谱再现技术研究.结构工程师, 34(S1):115-121. http://d.old.wanfangdata.com.cn/Periodical/jggcs2018z1018
    张鲁冰, 张同, 颜伟, 1999.燃气管道抗震措施.城市公用事业, 13(4):35-37.
    中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2010.GB50010-2010建筑抗震设计规范(附条文说明)(2016年版).北京: 中国建筑工业出版社.
    中华人民共和国住房和城乡建设部, 2015.JGJ 339-2015非结构构件抗震设计规范.北京: 中国建筑工业出版社.
    朱海华, 2006.基于性能的隔震结构非结构构件抗震性能研究.北京: 北京工业大学.
    Adam C., 2001. Dynamics of elastic-plastic shear frames with secondary structures:shake table and numerical studies. Earthquake Engineering & Structure Dynamics, 30(2):257-277.
    Antaki G., Guzy D., 1998. Seismic testing of grooved and threaded fire protection joints and correlation with NFPA seismic design provisions. American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP, 364:69-75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC025878934
    Asfura A., Der Kiureghian A., 1984. A new flow response spectrum method for seismic analysis of multiply supported secondary systems. Berkeley, CA: EERC, UCB.
    Asfura A., Der Kiureghian A., 1986. Floor response spectrum method for seismic analysis of multiply supported secondary systems. Earthquake Engineering & Structural Dynamics, 14(2):245-265.
    Chaudhuri S. R., Villaverde R., 2008. Effect of building nonlinearity on seismic response of nonstructural components:a parametric study. Journal of Structural Engineering, 134(4):661-670. doi: 10.1061/(ASCE)0733-9445(2008)134:4(661)
    Dillingham J. S., Goel R. K., 2002. Dynamic properties of fire sprinkler systems. San Luis Obispo: California Polytechnic State University.
    Hoehler M. S., Panagiotou M., Restrepo J. I., et al., 2009. Performance of suspended pipes and their anchorages during shake table testing of a seven-story building. Earthquake Spectra, 25(1):71-91. doi: 10.1193/1.3046286
    Ju B. S., Gupta A., 2015. Seismic fragility of threaded Tee-joint connections in piping systems. International Journal of Pressure Vessels and Piping, 132-133:106-118. doi: 10.1016/j.ijpvp.2015.06.001
    Ju B. S., Gupta A., Ryu Y., 2018. Seismic fragility of steel piping system based on pipe size, coupling type, and wall thickness. International Journal of Steel Structures, 18(4):1200-1209. doi: 10.1007/s13296-018-0100-4
    Kato T., Mizuno Y., Sasaki K., 2000. An experimental study on piping system with universal expansion joint for base isolated building. Architectural Institute of Japan, 2000:759-760.
    Kircher C. A., 2003. It makes dollars and sense to improve nonstructural system performance. in: Proceedings of the ATC 29-2 Seminar on Seismic Design, Performance, and Retrofit of Nonstructural Components in Critical Facilities. Newport Beach, CA: ATC, 109-119.
    Martinez G. E. S., 2007. A comparative study of a piping system subjected to earthquake loads using finite element modelling and analysis. Proceedings of 2007 Earthquake Engineering Symposium for Young Researchers. Seattle, WA: 2007.
    Oropeza M., Favez P., Lestuzzi P., 2010. Seismic response of nonstructural components in case of nonlinear structures based on floor response spectra method. Bulletin of Earthquake Engineering, 8(2):387-400. doi: 10.1007/s10518-009-9139-0
    Retamales R., Mosqueda G., Filiatrault A., et al., 2006. Experimental study on the seismic behavior of nonstructural components subjected to full-scale floor motions. New York: State University of New York, University at Buffalo.
    Sato E., Okazaki T., Tedesco L., et al., 2012. NEES/E-Defense Tests: seismic performance of ceiling/sprinkler piping nonstructural systems in base isolated and fixed base building. In: Proceedings of the 15th World Conference on Earthquake Engineering. Chicago, Illinois, United States: CDROM.
    Saudy A., Ghobarah A., AZIZ T. S., 1992. A modified CCFS approach for the seismic analysis of multiply supported MDOF secondary systems. Nuclear Engineering and Design, 133(2):183-197. doi: 10.1016/0029-5493(92)90179-Y
    Singh A. K., Ang A. H. S., 1974. Stochastic prediction of maximum seismic response of light secondary systems. Nuclear Engineering and Design, 29(2):218-230. doi: 10.1016/0029-5493(74)90124-1
    Sorace S., Terenzi G., 2008. Analysis and demonstrative application of a base isolation/supplemental damping technology. Earthquake Spectra, 24(3):775-793. doi: 10.1193/1.2946441
    Soroushian S., Maragakis M., Itani A., et al., 2011. Design of a test bed structure for shake table simulation of the seismic performance of nonstructural systems, Structures Congress. In: Proceedings of the ASCE/SEI Structures Congress. Las Vegas, NV: ASCE, 1191-1193.
    Soroushian S., 2013. Analytical seismic fragility of fire sprinkler piping systems. Reno: University of Nevada.
    Taghavi S., Miranda E., 2003. Response assessment of nonstructural building elements. Stanford, CA: Stanford University.
    Tian Y., Filiatrault A., Mosqueda G., 2013. Experimental seismic study of pressurized fire sprinkler piping subsystems. Buffalo, NY: MCEER.
    Toro G. R., McGuire R. K., Cornell C. A., et al., 1989. Linear and nonlinear response of structures and equipment to California and Eastern United States earthquakes. Palo Alto: Electric Power Research Institute.
    Zaghi A. E., Maragakis E. M., Itani A., et al., 2012. Experimental and analytical studies of hospital piping assemblies subjected to seismic loading. Earthquake Spectra, 28(1):367-384. doi: 10.1193/1.3672911
  • 加载中
图(1)
计量
  • 文章访问数:  117
  • HTML全文浏览量:  18
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-16
  • 刊出日期:  2019-09-01

目录

    /

    返回文章
    返回