• ISSN 1673-5722
  • CN 11-5429/P

一种改进的近断层脉冲型地震动模拟方法

杨福剑 王国新

杨福剑, 王国新. 一种改进的近断层脉冲型地震动模拟方法[J]. 震灾防御技术, 2019, 14(3): 489-500. doi: 10.11899/zzfy20190303
引用本文: 杨福剑, 王国新. 一种改进的近断层脉冲型地震动模拟方法[J]. 震灾防御技术, 2019, 14(3): 489-500. doi: 10.11899/zzfy20190303
Yang Fujian, Wang Guoxin. An Improved Approach for Near-fault Pulse-like Ground Motion Simulation[J]. Technology for Earthquake Disaster Prevention, 2019, 14(3): 489-500. doi: 10.11899/zzfy20190303
Citation: Yang Fujian, Wang Guoxin. An Improved Approach for Near-fault Pulse-like Ground Motion Simulation[J]. Technology for Earthquake Disaster Prevention, 2019, 14(3): 489-500. doi: 10.11899/zzfy20190303

一种改进的近断层脉冲型地震动模拟方法

doi: 10.11899/zzfy20190303
基金项目: 

国家自然科学基金 51578113

国家重点研发计划 2018YFD1100405

详细信息
    作者简介:

    杨福剑, 男, 生于1988年。博士研究生。主要从事结构工程及工程抗震方面研究工作。E-mail:fjyang@outlook.com

    通讯作者:

    王国新, 男, 生于1961年。教授。主要从事地震工程、防灾减灾工程及防护工程研究。E-mail:gxwang@dlut.edu.cn

An Improved Approach for Near-fault Pulse-like Ground Motion Simulation

  • 摘要: 本文基于小波包技术的随机地震动模拟方法,提出一种改进的参数化随机近断层脉冲型地震动模拟方法。然后,通过识别和提取近断层脉冲型地震动数据库中脉冲型地震动的特征参数,建立了基于震源、传播路径和场地特征等参数的脉冲模型参数预测方程。最后,通过模拟实际记录和误差分析检验了改进的模拟方法的有效性。结果表明:应用改进的模拟方法得到的地震动时程无论在波形、频率特性还是峰值上均与实际记录具有较好的一致性。改进的模拟方法在保留地震动时频非平稳性的基础上,能够有效地提高近断层脉冲型地震动的模拟效果,并且能够很好地体现脉冲型地震动的主要特征。
  • 图  1  基于小波包的地震动模拟方法流程

    Figure  1.  Procedures for simulating ground motions using wavelet packet method

    图  2  MP03脉冲模型参数识别

    Figure  2.  Parameter identification of MP03 pulse model

    图  3  1979年Imperial Valley地震NGA#180水平向脉冲地震动模拟过程

    Figure  3.  Simulation process of NGA#180 horizontal pulse-like ground motions from Imperial Valley earthquake in 1979

    图  4  NGA#182和NGA#1084的实际观测和模拟地震动时程

    Figure  4.  Acceleration, velocity and displacement time histories of observed and simulated ground motions

    图  5  NGA#182和NGA#1084的实际观测和模拟地震动的加速度反应谱(5%阻尼比)

    Figure  5.  Acceleration response spectra at 5% damping ratio of observed and simulated ground motions

    图  6  脉冲地震数据库中实际观测记录与模拟时程的加速度反应谱的残差均值及±1倍标准差

    Figure  6.  Mean residual bias and the±one standard deviation of near-fault stations observed and simulated in the pulse-like ground motions database

    表  1  拟合参数γυ的分布系数和限定条件

    Table  1.   Boundary condition and coefficient of marginal distributions fitted to parameters γ and υ

    参数 单位 符合分布 选定下限 选定上限 合适的分布参数 均值 标准差
    γ burr 2.0 3.0 α=2.49,c=21.80,k=4.20 2.3 0.14
    υ π uniform 0 2 1.0 0.58
    下载: 导出CSV

    表  2  MP03脉冲模型参数的回归系数和标准差

    Table  2.   Regression coefficients and standard deviations of the MP03 model parameters

    参数 α0 α1 α2 β1 β2 β3 β4 β5 ϕ τ σ
    Vp 1.6784 1.6152 1.6643 0.2201 -0.3060 -0.3230 -0.1231 0.0054 0.132 0.108 0.330
    Tp -0.2312 -0.1828 0.1677 0.1762 -0.1295 0.0043 0.261 0.136 0.294
    t0 -0.8739 -0.7214 -0.4478 0.2708 0.0551 -0.0455 0.0028 0.285 0.089 0.308
    下载: 导出CSV
  • 樊剑, 涂家祥, 吕超等, 2008.采用时频滤波技术的近断层脉冲地震人工模拟.华中科技大学学报(自然科学版), 36(11):116-119. http://www.cnki.com.cn/Article/CJFDTotal-HZLG200811044.htm
    李亚楠, 2016.工程用地震动模拟随机性方法研究.大连: 大连理工大学. http://cdmd.cnki.com.cn/Article/CDMD-10141-1016204382.htm
    罗全波, 陈学良, 高孟潭等, 2018.近断层速度脉冲与震源机制的关系浅析.震灾防御技术, 13(3):646-661. http://zzfy.eq-j.cn/zzfyjs/ch/reader/view_abstract.aspx?flag=1&file_no=20180316&journal_id=zzfyjs
    田玉基, 杨庆山, 卢明奇, 2007.近断层脉冲型地震动的模拟方法.地震学报, 29(1):77-84. http://d.old.wanfangdata.com.cn/Periodical/dizhen200701009
    Atkinson G. M., Assatourians K., Boore D. M., et al., 2009. A guide to differences between stochastic point-source and stochastic finite-fault simulations. Bulletin of the Seismological Society of America, 99(6):3192-3201. doi: 10.1785/0120090058
    Baker J. W., 2007. Quantitative classification of near-fault ground motions using wavelet analysis. Bulletin of the Seismological Society of America, 97(5):1486-1501. doi: 10.1785/0120060255
    Beresnev I. A., Atkinson G. M., 1997. Modeling finite-fault radiation from the ωn spectrum. Bulletin of the Seismological Society of America, 87(1):67-84.
    Boore D. M., 1983. Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. Bulletin of the Seismological Society of America, 73(6A):1865-1894. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0aecda90-ca1d-4056-aa8d-57610c62fdb5
    Bray J. D., Rodriguez-Marek A., 2004. Characterization of forward-directivity ground motions in the near-fault region. Soil Dynamics and Earthquake Engineering, 24(11):815-828. doi: 10.1016/j.soildyn.2004.05.001
    Campbell K. W., 2008. Hybrid empirical ground motion model for PGA and 5% damped linear elastic response spectra from shallow crustal earthquakes in stable continental regions: Example for eastern North America. In: Proceeding of the 14th World Conference Earthquake Engineering. Beijing, China: WCEE.
    Dabaghi M. N., 2014. Stochastic modeling and simulation of near-fault ground motions for performance-based earthquake engineering. Berkeley: University of California. https://escholarship.org/uc/item/8db18756
    Dabaghi M., Der Kiureghian A., 2017. Stochastic model for simulation of near-fault ground motions. Earthquake Engineering & Structural Dynamics, 46(6):963-984. http://cn.bing.com/academic/profile?id=080c7eb3415d4053e615dc23bd911f6a&encoded=0&v=paper_preview&mkt=zh-cn
    Joyner W. B., Boore D. M., 1993. Methods for regression analysis of strong-motion data. Bulletin of the Seismological Society of America, 83(2):469-487. http://cn.bing.com/academic/profile?id=862575101d927d3d6b3b88e6526957a0&encoded=0&v=paper_preview&mkt=zh-cn
    Li Y. N., Wang G. X., 2016. An improved approach for nonstationary strong ground motion simulation. Pure and Applied Geophysics, 173(5):1607-1626. doi: 10.1007/s00024-015-1189-4
    Mavroeidis G. P., Papageorgiou A. S., 2003. A mathematical representation of near-fault ground motions. Bulletin of the Seismological Society of America, 93(3):1099-1131. doi: 10.1785/0120020100
    Motazedian D., Atkinson G. M., 2005. Stochastic finite-fault modeling based on a dynamic corner frequency. Bulletin of the Seismological Society of America, 95(3):995-1010. doi: 10.1785/0120030207
    Somerville P. G., Smith N. F., Graves R. W., et al., 1997. Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity. Seismological Research Letters, 68(1):199-222. doi: 10.1785/gssrl.68.1.199
    Yamamoto Y., Baker J. W., 2013. Stochastic model for earthquake ground motion using wavelet packets. Bulletin of the Seismological Society of America, 103(6):3044-3056. doi: 10.1785/0120120312
    Yang D. X., Zhou J. L., 2015. A stochastic model and synthesis for near-fault impulsive ground motions. Earthquake Engineering & Structural Dynamics, 44(2):243-264. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=720a58f1cf843d0534c204535de9022c
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  148
  • HTML全文浏览量:  10
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-17
  • 刊出日期:  2019-09-01

目录

    /

    返回文章
    返回